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_— ABSTRACT
?i“ WUsing the maximum-1ikelihood estimation method and minimization
_f_t techniques, quasi-geostrophic wave solutions were fitted to the

_5£ observations of the 1981 Ocean Acoustic Tomography Experiment. The
iﬁf: experiment occupied a 300 km square area centered at 26°N, 70°W, and
S had a duration of ~80 days. The data set consisted of acoustic
_iff: travel-time records, temperature records and CTD profiles, obtained
; from the acoustic tomographic array, moored temperature sensors and
Qflil recorders, and ship surveys, respectively, While the latter two

were conventional spot measurements, the former corresponds to

integral measurements of the temperature (or sound-speed) field.

©m N
N -

Ve e oo AR ST L T e o R L
A . e e Ve D) R A R LR
L O P T S T I .. - P o . ~N N ™ s L e s
. . : e, L e e R L TS IO S i A L AL »
' A T R SO S PR SR R IRA L - et N
- P Do, WP ST W T W R ey

A Bred adh Riodaridh nAuh St ~ ol b i ol




.F.-

o

N

- 3
o
(_ The optimal fit to the data corresponded to 3 waves in the first
o)

a 2 baroclinic mode, evolving under the presence of a westward mean flow
\qf 3
\_3 with vertical shear, The flow was estimated to be weak (~2 cws),

I but it changed the wave periods significantly by producing large

o)

t. Doppler shifts. The waves were dynamically stable to the mean flow,
?_ had weak nonlinear interactions with each other and did not form a

~ resonant traid; thus they constituted a fully linear solution.

‘:'-'_ Evidence for the existence of the waves was strongly supported

';:.f.; by the high correlation (~0.9) between the data and the {it, the
large amount of signal energy resolved (~80 percent), the excellent

, quality of the wave-parameter estimate (only about 10 percent in

error), and the general agreement between the observations and

quasi-geostrophic 1inear dynamics .
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CHAPTER 1
INTRODUCT ION

Over the last two decades, several vigorous research programs
have been conducted by scientists to study oceanic mesoscale
variability. As a consequence, a more detailed and realistic
description of the ocean circulation has been obtained., Much of the
knowledge of the variability has been obtained from extensive
experiments such as POLYGON, 1970 (Brekhovskikh et al., 1971),
ff? MODE-0, 1971-1972, MODE-1, 1973 (MODE Group, 1978) and the recent
;i;; POLYMODE, 1974-1978 (U.S. POLYMODE Organizing Committee, 1976) in
~ whichn multi-moorings and a variety of instruments were deployed to
observe the four-dimensional fields of current and density at
mid-latitudes in the North Atlantic. Today, it is well-known that

mesocale fluctuations that are often called 'eddies' are

energetically dominant and exist everywhere in open oceans. Even
{! close to land, numerous observations of trapped mesoscale motions
:;_ have also been reported (Longuet-Higgins, 1968, Wunsch, 1972, and
] N Hogg, 1980). -
if; Besides being the most dominant feature in the ocean, eddies E
i interact with the mean circulation through the processes of energy :
- cascades to larger-scale flows (Rhines, 1975) and barotropic and !
ZEE baroclinic instabilities (Pedlosky, 1979), and they transport heat :
;Z} ana salt effectively by their intense flow field. Therefore, the 1
ﬁ{; knowledge of eddy dynamics is of fundamental interest to physical é
:
% 33
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oceanographers in understanding the general circulation.

Furthermore, the research is also of great significance to

meteorologists and marine scientists in other disciplines, since

ocean eddies can influence the long-term climate on earth through

air-sea interaction, transport chemicals, and relocate biological
matter.

Mesoscale eddies are characterized by periods of 50 to 100 days,
horizontal scales of order 100 km and vertical scales comparable to
‘ the depth of the ocean (Richman et al., 1977, and McWilliams,

.?1 1979). In places where the flow field is strong, for example in
regions close to the major currents, the fluctuations are nonlinear
turbulent motions. However, it is conceivable that the fluctuations
can be wave-like and dispersive in places that are relative calm,

_‘-j:f-. because the linearized equation of mesoscale motion, that is the

linearized quasi-geostrophic potential vorticity equation, does

‘ admit planetary wave solutions (LeBlond and Mysak, 1978, and

Pedlosky, 1979). Furthermore, the wave solution does exhibit

behavior that is consistent with some observations, for example,

westward phase propagation.

Li terature on the theory of planetary waves is abundant, but
only slight observational evidence for their existence in open

oceans exists. Perhaps, the most striking evidence to date was

found by McWilliams and Robinson (1974), and McWilliams a2 Sierl
(1976), by fitting waves to the POLYGON observations and tre

MODE -array data, respectively. POLYRN was conducted by the USSR in
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the tropical North Atlantic during the spring and summer of 1970.
The array, which centered at 16°30'N, 33°30'W, measured the eddy
currents for several months from moored current meters and
hydrography. The data was analyzed and presented by Koshlyakov and
Grachev (1973). They inferred that a single, anti <yclonic eddy, a
few hundred kilometers in diameter, traversed the array during the
experiment, and synthesized their observations in terms of a moving
elliptical cylinder representing the locus of maximum horizontal
current at each depth. McWilliams and Robinson (1974) fitted
planetary waves in a two-layer model to the descriptive synthesis,
in which the free parameters, that is the wave amplitudes and
wavenumbers were determined from the major and minor axes, the
orientation angle and the maximum orbital speed of the ellipse. It
was found that the synoptic structure and propagation of the ellipse
were well matched by a pair of baroclinic waves with equal pressure
amplitudes. However, the POLYGON wave fit was highly subjective and
might not be optimal due to the fact that the number of waves was
arbitrarily chosen and the observations used were not the actual
data themselves. The lack of actual data has prevented McWilliams
and Robinson from making a quantitative assessment of the wave model.
The Mid-Ocean Dynamics Experiments MODE -0 and MODE-1 were
conducted jointly by the USA and UK in an approximately 400 km
square region centered at 28°N, 69°40'W, again in the tropical North
Atlantic. MUDE-O was a collection of several pilot studies that

were carried out between 1971 and 1972 to identify the energy level,
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and space and time scales of the mesoscale motion. It was then
followed by MODE-1, which was a more comprehensive experiment
designed to provide an accurate four-dimensional mapping of a
mid-ocean eddy during the spring of 1973. Several combinations of
barotropic and baroclinic waves in a continuous ocean model were
fitted to the MODE-0 and MODE-1 data sets by McWilliams and Flier]
(1976). wWhile the MODE -0 data set contained only current-meter
records having durations of from 1 to 3 months, the MODE-1 data set
was much larger and more uniform in space and time, having a
duration of 4 months. It also contained di fferent types of
observations, i.e. from current meters, moored temperature sensors,
hydrographic stations and float tracks. In the fitting process, the
free wave parameters were chosen optimally to minimize a quadratic
error norm for the di fferences between the data and fit. While the
best MODE-1 fit consisted of a pair of waves in the barotropic mode
and a pair of waves in the first baroclinic mode, the best MODE-O
fit consisted of a pair of barotropic waves only. Both MODE wave
fits were fairly successful, having correlations of 0.7 with the
data and accounting for ~1/2 of the observed signal energies, i.e.
~70 percent of the signals (rms). However, the MODE-1 fit
corresponded to an inconsistent 1inear solution: nonlinear wave-wave
interactions within the fit were predicted by the weakly nonlinear
theory to be strong but were not found in the data. Thus, there

remains some doubt as to whether planetary waves truely existed

during MODE-1, and more fundamentally perhaps, whether planetary

Cahy- 2]
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wave propagation is a typical dynamical phenomenon in that part of
the ocean.

The purpose of this dissertation is threefold. First, it
reinvestigates the existence of planetary waves in the tropical
North Atlantic. This time, the investigation is done by trying to
detect the wave signals from the acoustic and spot observations made
in the 1981 Ocean Acoustic Tomography Experiment (The Ocean
Tomography Group, 1982), and in doing so, the wave dynamics in the
region which is centered at 26°N, 70°W (which will be referred to as
the tomographic region) is also investigated. Second, it examines
the performance of the acoustic-tomographic observational system,
the spot -observational system and the combination of the two
systems, as deployed in the experiment, in observing the waves and
also in mapping the ocean. Third, it explores the possibility of
using acoustic tomography to provide adequate large-scale monitoring
in the absence of the tracking of the motion of the acoustic
moorings .

The investigation of the existence and dynamics of planetary
waves involves analyzing the fits of different but plausible
wave-propagation models to di fferent types of observations of
sound-speed or temperature perturbations, made by the CTD casts,
temperature sensors, temperature-pressure recorders and the acoustic
tomographic array deployed in the experiment. The hope is to be

able to detect the waves and, at the same time, determine the

correct wave dynamics in the fitting process by comparing the

,.
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\ quality of the different wave -model fits. Due to the insufficiency .
'~ of explicit current measurements which came from only two horizontal
locations, some deficiences will persist in our investigation. For .
o example, we cannot observe the barotropic waves and explore the l
:k thermal wind relation between the wave-induced current and density
perturbations.
| 1 The technique of fitting used here is procedﬁrally similar to
k that used by McWilliams and Flierl (1976), corresponding to the
' minimization of a quadratic error norm between the data and the wave
.. fit, that is a weighted sum of products of residuals. However, a
fundamental difference is that, while they have defined their error
x\ norm by choosing the weighting factors in a subjective manner as to
. give equal weighting to each subset of data of the same type, we
have constructed our norm by adopting the idea of maximum 1ikel ihood
*j from the stochastic framework, i.e. the weighting factors are the y
‘_ reci procals of the noise variances. The appeal of using statistical
f:i;:,' approaches is that the meaning of a wave fit being the ‘optimal' or
‘best' can be explicitly defined in terms of statistical
‘:‘ conditions. Another difference is that our fitting involves )
acoustic observations that correspond to integral measurements of 3
"‘; the field in addition to spot observations.
We must give credit to The Ocean Tomography Group who provided
the data. The experiment was conducted by them primarily for the
testing of 'Ocean Acoustic Tomography' which is a pure acoustic

e inverse scheme for monitoring large-scale fluctuations in ocean




basins. Tnhe innovative idea of ocean tomography was first

. introduced by Munk and Wunsch (1979) and the scheme is analogous to
the medical tomographic procedure CAT scan. A typical mid-ocean
tomoyraphic system, as described by Munk and Wunsch and deployed in
the experiment, consists of a sparse horizontal array of moored

ﬂt mid-water acoustic sources and receivers that surrounds a large area
of the ocean under study, so that by exploiting the properties of
b sound propagation in the SOFAR channel, such as low attenuation and
fg mul tipath arrivals, the entire volume can be remotely sensed,

! horizontally, vertically, and temporally with large-scale resolution
by using repeated acoustic transmissions. Thus, through

- mathematical modeling of the relation between oceanic and acoustical
fluctuations, the four-dimensional sound-speed perturbation field
should be reconstructatic based on the observed perturbations of the
b~ mul tipath arrival times using inverse techniques. Superior to

.4 traditional spot-measurement techniques, acoustic tomography can

;77' monitor a larger region and provide a l1arger database with fewer
moorings, and its averaging (integrating) process can filter out
undesirable small-scale oceanic features automatically.
Furthermore, unlike shipboard surveys, it can map the ocean

- instantly and the mapping can be done frequently. These advantages
- of cost effectiveness and high temporal resolution are some of the
appeal of acoustic tomography. However, the acoustical scheme

- depends critically on the stability, identification and resolution

of multipaths over long distances. These have been verified bhv

.........




Spiesberger et al. (1980) and Spindel and Spiesberger (1981) in

preliminary experiments.

The 1981 experiment was the first field test of a full
tomographic system for mapping the ocean at mesoscale resolution.

In order to evaluate the performance of the system, the experimental
region was also measured with traditional techniques by The Ocean
Tomography Group during the same time. The idea was to provide a
basis for comparison. The tomographic system in a 1inear form was
later ‘inverted' for the three-dimensional sound-speed perturbation
fields, independently of time and only with acoustic data, by
Cornuelle (1983) and Cornuelle et al. (1985). Because the daily
tomographic maps do compare favorably with the ship-based objective
maps, they have demonstrated the practicality of acoustic tomography
for mesoscale monitoring. Here, our principal objective is to
investigate the existence and dynamics of planetary waves;
therefore, in order to obtain the best estimate of the wave
parameters and wave dynamics, we have incorporated the spot
measurements of temperature as well as the integral measurements
(that is the acoustic travel-time data) in our estimate.

The inversions of the data performed in this study are for the
retrieval of the planetary wave parameters and the planetary wave
field, and are intrinsically different from those previously done by
Cornuelle (1983) and Cornuelle et al. (1985). The originality of
our inversions lies in that they give a time -dependent estimate of

the unknown field, the system involved is nonlinear with respect to




the unknown parameters, and contains both acoustic and traditional
(spot) observations. Specificically, the system is 'inverted' for
the four-dimensional sound-speed perturbation field subject to the
di fferent dynamical constraints constituted by the plausible models
of wave propagation. The inversions, therefore, besides producing

maps of the ocean structure, also test different wave dynamics

against the data for consistency énd optimality. Due to the

nonlinear nature of our inverse problem, standard 1inear techniques
such as Singular Value Decompositions and Gaussian Eliminations are
not applicable, so that we use iterative descent minimization
techniques to solve the problem.

In order to observe the waves, the forward problem of how the
observations of the dynamical field are related to the evolution of
the waves under different dynamical conditions must first be
resolved. This suject is pursued in Chs. 2 and 3. In Ch. 2, we
examine the theory of planetary waves by reviewing the literature.
We review the evolution of the waves at mid-latitude, and under the
possible effects of weak mean current, small bottom slope and weakly
nonl inear wave-wave interaction. An objective is to illustrate that
the space and time behavior is constrained by the modal dispersion
relationship and characterized by the wave parameters: wavenumbers,
wave amplitudes, modal amplitudes of the mean flow and growth
rates. In Ch. 3, we develop the model equations that relate the

data to the wave parameters that characterize the wave and mean-flow

AAREL L L.,
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induced sound-speed perturbation. We also describe the filtering
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and reduction of the data prior to the inversions. Furthermore, we
present three plausible dynamical models of the induced sound-speed
perturbation, which have been fitted to the data to estimate the
wave dynamics.

In Ch. 4, we discuss the general parameter-estimation or inverse
problem. The goals are to relate and unify some commonly used
estimation methods, deterministic or stochastic, and to show that
there is a general estimation procedure, common to all the methods
considered, to obtain the optimal solution. The procedure
corresponds to the minimization of an objective function of a
weighted sum of products of residuals, that is a quadratic error
norm. We also discuss the error variance of an estimate and some
widely used numerical techniques for minimization. We further
present some simple measures of goodness of the fit for appraising
models .

Using a gradient method for minimization (Fletcher and Powell,
1963), the wave parameters of each of the three plausible wave
models were estimated. This corresponds to wave fitting, and in
order to estimate the number of waves, a range of one to five waves
was assumed for each model in the fitting. The results of the wave

fits and the identification of the optimal model and number of waves

are described and discussed in Ch. 5. Furthermore, the error
variance of the estimated wave and mean-flow induced sound-speed

perturbation, associated with the error of the optimal estimate of

wave parameters, is analysed.

v
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InCh. 6, we first summarize the results of the wave fits and

comment on the dynamics, linearity and stability of the waves
observed. We then compare this wave fit with the MODE wave fits,
and from the results of the three wave fits, we make general
statements on the wave dynamics in the area occupied by the
experimenté. We also compare the tomographic inverse method of
Cornuelle (1983) and Cornuelle et al. (1985) with our method, and
analyse the ability of the acoustic, spot and mixed observational
systems in observing the waves and mapping the ocean. We then make
concluding remarks on the investigation.

The motion of the acoustic moorings, if not tracked, can be
misinterpreted as oceanic fluctuations in a tomographic inversion.
However, for economical reasons, it is highly desirable to know
whether reliable acoustic mapping of the ocean structure can still
be yenerated without the deployment of navigational systems for
tracking mooring motions, but rather through parameterization of the
mooring motions, as was done by Cornuelle (1983). As a secondary ?
contribution by this dissertation, a study of this engineering :

problem is presented in Ch. 7.

In Ch. 7, we derive bounds on the error of the tomographic

sound-speed estimate in the presence of untracked mooring motions. R

An important result shows that the error variance of the estimate is
practically invariant with the size of mooring motion but is almost
always reaching the upper variance bound. The implication is that,

given a priori information about the field, the geometry of the
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tomographic array, and the noise level, the upper bound can be
evaluated to give an indication about whether it will be necessary
to track the moorings before the deployment.

Not to bore the readers who are experts on the subjects of
planetary waves and parameter estimation, or only interested in the
data-model relations and the estimation results, we take this
opportunity to inform them to skip Chs. 2 and 4 in their reading.
These two chapters contain only review material. The literature on
the two subjects is vast, and our only excuse for writing Chs. 2 and
4 is to define the mathematical notation used in this thesis. New
material and results are contained in Chs. 5, 6 and 7, and in part
of Ch. 3. The acoustic forward problem considered in Ch. 3 has
previously been studied by Munk and Wunsch (1979}, Cornuelle (1983)
and many others, and the reason for the redundancy here is just to
make this presentation of the forward problem a complete one. New
material in Ch. 3 are the results of the analytical-mode
decompositions of the CTD data, the use of the modal decompositions
as a data reduction scheme and a demonstration of the transparency

of the higher modes to acoustic measurements.
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CHAPTER 2
o MESOSCALE PERTURBAT IONS AND WAVE MOT IONS

In the open ocean, the largest portion of the total kinetic
energy is contained in the mesoscale frequency band. Mesoscale
perturbations or eddies have characteristic flow speeds of il
centimeters per second, horizontal length scales of hundreds of
3i kilometers, vertical length scales comparable to the depth of the
_L; ocean, typical oscillation periods of months, and westward phase
velocities. OUver nonsteep and smooth bottom topography, eddy
currents are basically horizontal, the momentum balance is almost
geostrophic and the local dynamics are governed by the law of
conservation of quasigeostrophic potential vorticity.

Away from intense mean currents, lateral boundaries and steep -
bottom topography, dispersive planetary (or Rossby) waves of low )
.,{ frequencies and large length scales can propagate due to the
‘ latitudinal variation of the coriolis parameter. These waves are 3
solutions of the linearized equation of the conservation of
quasigeostrophic potential vorticity. The linearization is valid
when the ratio of the wave period to the advective time is small
compared to unity. Under such circumstances, mesoscale fluctuations
% in the flow field and the density field are direct consequences of

the propagation of planetary waves; the density fluctuations are in

turn related to temperature and sound-speed perturbations.
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This chapter is intended to examine, by reviewing the
literature, the dynamics of planetary waves, and the underlying
dynamical and geometrical approximations used on the basic equations
of motions. Sources of reference are leBlond and Mysak (1978) and
Pedlosky (1979) for the scaling analysis on the basic equations, the
derivation of the quasigeostrophic potential vorticity equation and
the general theory of planetary waves, Flierl (1978) for the
orthonormalization of the quasigeostrophic potential vorticity
equation and the derivation of the horizontal-structure equations
associated with the normal modes, and Longuet-Higgins et al. (1967)
for the theory of resonant wave-wave interactions. The mechanisms
for wave generation and dissipation will not be considered, the
focus will be on the evolution of planetary waves at mid-latitude,
under the influnence of the earth's rotation, and under the effects
of weak mean currents, small bottom slopes and weakly nonl inear
wave-wave interations. The goals are to derive relations between
perturbed dynamical variables and wave -parameters such as
wave-amplitudes, wavenumbers and wavefrequencies, and most important
of all, to carefully study how planetary waves propagate and
interact. Uur knowledge of mesoscale variability can be increased
if some dynamical variables are measured or remotely sensed and wave

parameters are then estimated.
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~_‘ 2.1 Governing Equations For Mesoscale Motions
2.1.1 Basic Laws Of Conservation
The conservation 1aws for an unforced, incompressible,

nondi ffusive (in both heat and salt) and invicid ocean model are

(LeBlond and Mysak, 1978)

Wy - tf§7p *g, (2.1)

dt o

do _ o, (2.2) ;

dat :
J and

v- !. = 0, (2. 3)

where d/dt is the total derivative, all the dynamical variables are

= functions of time and space, v is the velocity vector of fluid
particles relative to the rotating frame associated with the earth

that has a constant angular velocity vector u (its magnitude is

o~ 7.3x107°

rad/s), o and p are the density of the fluid and the
pressure acting on it, respectively, and the g vector is the

acceleration of gravity (its magnitude is g~9.81 m/sz). The

i
i
il
y
1
g
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conservation of momentum is expressed in (2.1), (2.2) is a statement

regarding the thermodynamic properties of nondiffusivity and

incompressibility, (2.3) expresses continuity (conservation of

volume) and is a combined result of conservation of mass and (2.2).
In the static state where v=0 and p=pQ is a function of depth

-z or the radial coordinate only, the hydrostatic pressure Py is

related to pg by

dpy(z) | (z)
= - g. (2.4)
dz °0

We would 1ike to point out that the static state is generally
different from the mean state, i.e. they would be the same only when
there is no mean motion. In a nonstatic state where the fluid has
motion, the pressure and density depart from hydrostatics to become

p=py*p' and p=pp*p', and (2.1} and (2.2) can be rewritten as

d_"--291=-_1 Ve'*P2 g (2.5)
dt o * o*

and
do' dpo
__tw__" =0, (2.6)
dt dz

papr——
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respectively, where w is the vertical or radial velocity. In (2.5),
o is replaced by a constant reference density o*~1 g/ml (the
Boussinesq approximation) because the variation of o in both time
and space is only about one percent througout the ocean, hence the
31 replacement would insignificantly alter the coriolis and inertial

forces.
2.1.2 Scalings And Approximations

Scaling analysis can be employed to simplify the complicated
basic set of equations (2.3), (2.5) and (2.6) to a set that
describes only mesoscale motions at mid-latitude. The method of
simplification which is described in detail by Pedlosky (1979)

* consists in, as a first step, the transformation from the spherical
coordinate system to one with x,y and z coordinates representing the
eastward, northward and upward distances, repectively, measured from
the transformed origin located on the surface of the ocean, at a
lati tude 9 where the area under study is centered. The
transformation includes the Taylor expansions of the trigonometric
functions of latitude o, which appear in the equations because of
sphericity, about ) in powers of x and y. The components of v

are now u, v and w corresponding to the x, y and z directions,
respectively. As a second step, the independent variables are
scaled and the dependent (dynamical) variables are normalized so

that a set of nondimensional equations is obtained. The scalings

i

‘:I‘ “x

.
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and normalizations are done by using observed characteristic
lengths, times and flow speeds, and also by using observed or
estimated magnitudes of w, p' and p'. The quantities used for the
scalings and normalizations are shown in the second row of table
(2.1). At mid-latitude, a typical horizontal length scale is L~100
km, a typical vertical length scale is H~1 km and a characteristic
horizontal flow speed is U~5 cn/s. From continuity, an estimate of
an upper bound for the magnitude of w is UH/L and this quantity is
used for its scale. It is important to point out the way that p'

and p' are scaled is due mainly to our perception that the motions
are almost geostrophic and hydrostatic.

Next, the scaled dynamical variables are expanded as
perturbation series in powers of a small parameter ¢. Then
equations that describe the temporal and spatial behavior of the
nonvanishing leading terms in the expansions are sought. The small

parameter is the Rossby number and, approximately, two other

important small geometrical ratios:
€= U/FL “LR ~H/L - 1072, (2.7)

where R~6.36x103 km is the earth's radius and fo"IO'4 rad/s is
the coriolis parameter f=2usine evaluated at g The smalliness of
the Rossby number U/foL and the aspect ratio H/L indicates that
the flow is predominantly geostrophic and horizontal. The neglect

of higher-order terms emphasizes that our interest is in local
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dynamics, with the localization in space explicitly indicated by the

ratio L/R.
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A table 2.1

Summary Of Orders Of Magnitudes And Scales

i variables X,y 2 t U,V W p' o'

5 scaling or L H LV U UH/L p*fOUL p*fOUL/gH
4 normal izing factor

= order of magnitude U dH/L UL p*UL/gH
- order of magnitude of error & eUH/L ep™*f UL ep*f UL /gH

) in quasigeostrophic solution
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2.1.3 Quasigeostrophy

After collecting nondimensional terms in the equations with like
powers of ¢, we find that to the lowest order in ¢ (that is order
o)

e ), the motion is geostrophic (equations will be put back in

dimensional forms),

() = L (2P ey (2.8)

hydrostatic,

- = D'g»

7 (2.9)
horizontally nondivergent, and the zeroth-order w vanishes. Note
that p'/p*f0 is a geostrophic (zeroth-order) stream function and

vsp'/p*fo is the geostrophic (zeroth-order) relative

vorticity as indicated by (2.8) ;v§=32/3x2+32/ay2 is
the horizontal Laplacian. Equations (2.8) and (2.9), in a sense, d
are not too interesting because they do not provide any new
information nor information regarding the evolution of the

perturbations in time. However, it is clear that w is more

accurately of order UH/L, which is even smaller than the original
estimate. The precise order of magnitudes of the dependent

variables are summarized in the third row of table (2.1).
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Al though w is very small (a first-order quantity), it must be
taken into account in order to study mesoscale dynamics. In fact,
by considering also the first-order equations in ¢, it is found that
changes in the vertical component of the zeroth-order absolute
vorticity (planetary plus relative vorticities) along a particle'’s
path line are produced solely by the streching of vortex tubes or

the small divergence of the horizontal flow aw/3z:

d 1 2 aw
H ( p' +f ) =f s (2.10a)
A v 0

where

a.la
ctlr

2wy @ ey 2 L2 Lo Lap'a (5 g 1
Wy 3 P, W Wiy

In

As a result of the geometrical scalings and the neglect of
higher-order terms, the vertical planetary vorticity or the coriolis

parmeter f in (2.10a) is evaluated locally as
f=Ffy *ay, (2.11)

where 8= 2ucosey/R ("2x10'8 rad/s/km) is the latitudinal gradient
of f evaluated at o3, It is also obtained that w is related to p'

by

X

"
Qo

x

s (2.12)
o"N(z)2 az

(=¥
ot




- o

...............

31

where

Nz)2 = - 9 2egl2) (2.13)
p" 3Z

N(z) is the Brunt-Vaisala frequency that characterizes the stability
of the water column and is assumed to be known from density
measurements. Obviously, the vertical displacement of isopycnal
surfaces (or isothermal surfaces or surfaces of constant sound

speed) is, from (2.12),

n = ap . (2014)

We would like to add that in collecting terms to 1ike orders, we
have used the fact that the Burger's number (Hvl/Lfo)2 is of
order one since N=10"° (rad/s)2.

The consideration of quasigeostrophy, that is the small
deviation from geostrophy or the small w, leads further to the
derivation of a single equation for the stream function in a closed

form (the equation is obtained by combining (2.10) and (2.12)):

2

d f '
Hrgd 2 92 p1r s P, (2.15)
dt aziz az dx

......................
..............................
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Since it is known that the potential vorticity (\/xv+*2u)'\/p
is conserved following a fluid particle in an incompressible,
adiabatic (invicid and nondiffusive) and unforced ocean (the proof
can be found in Leblond and Mysak, 1978), it is interesting to point
out that (2.15) is simply a statement of this conservation law but
following from the applications of the geostrophic, hydrostatic,
geome trical and Boussinesq approximations. Therefore, the governing
equation for mesoscale motions is the conservation of
quasigeostrophic potential vorticity.

We have already derived relations between p' and other dynamical
variables. Unce (2.15) is solved for p' with the appropriate
boundary conditions, other dynamical variables are then known from
(2.8), (2.9) and (2.12). The solutions are not exact but are
zeroth-order approximations for p',u,v and p', and a first-order
approximation for w, hence they are accurate to within about 100¢

percent, that is about one percent. The order of magnitudes of the

errors in the quasigeostrophic solutions are summarized in the

fourth row of table (2.1). p
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2.2 Boundary Conditions

The boundary conditions are the continuity of pressure and
displacement across the disturbed ocean surface at z=s(x,y,t), and
the vanishing of the normal velocity at the rigid bottom at

z=-D+b(x,y); D is the nominal depth of the ocean and D>>|s| and |b

However, it is desirable to scale and approximate these conditions
so that they can be replaced by a simplified but consistent version .
that applies to p' at z=0 and z=-D instead. Otherwise, it would be
a very difficult task to solve (2.15). The simplifications will be
detailed in the following sections.
2.2.1 The Surface
The exact conditions are, at z=s,

p0&)+meyJ¢)=pr (2.16a)

and

The atmospheric pressure Py can be assumed constant as far as the

ocean is concerned, because the magnitude of the variation of Pa

is much smaller and the length scale of variation is much 1arger.




After sustituting the Taylor expansions of the dynamical
variables about z=0 in powers of s in (2.16), and then dropping

nonlinear terms in s, p' and w (so that only the largest terms are

kept), we obtain, at z=0,

p' ~ pggs (2.17a)
and

W~ dHS/dt (2.17b)

with the uses of (2.4) and the identity PgP,- The above two

equations can be combined to give,at z=0,

( ) . (2.18)

&=~

p'

°gd
An order of magnitude analysis (by using table (2.1)) shows that

the R.H.S. of (2.18) is of order e L%F3/gH)(UH/L), but it is

also of order e¢2(UH/L) since szg/gH (estimated with the

typical values of L, f5, g and H) is approximately equal to e. 1In

conclusion, the R.H.S. of (2.18) that introduces only a second-order

correction to w can be consistently discarded without affecting the

quasigeostrophic solution. The result is the rigid-lid

approximation, that is
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w(x,y,0,t)=0, (2.19)

or equivalently,

( -1 Py Lo at ze0, (2. )

as obtained by using (2.12).

2. 2.2 The Bottom

The exact boundary condition at the bottom can be written as

w = uab/ax * v ab/ay at z=-D+b. (2.21)

Substitution of the linear expansions of u, v and w about z=-D in b

and dropping the nonlinear terms in w and b in (2.21) gives

W~ uab/ax * v ab/ay at z=-0. (2.22)

In order for quasigeostrophic theory, which requires w to be of

order ¢UH/L, to remain valid, we must restrict the magnitudes of the

slopes to be approximately equal to or smaller than eH/L. On the

R Y B R L L
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{‘ “ other hand, if the magnitudes of the slopes approach eZH/L, we can
}.-u:
j J-?__-}‘ consistently set w=0 at z=-D without affecting the solution.
x:\:\'.
-::7‘ In using (2.8), (2.12) and (2.22), the condition for p' can be
ey written as
ﬁ( -1 Py - ! Jp',b)  at z=D, (2.23a)
dt o2 ez asr
o *N 0
where
;n‘«.f ap'ab ap' ab
{:;»',j; Jp'sb) = - (2.23b)
Aoy 3X 3y 3y aX
J;~j~}{
js the Jacobjan operation.
__




2.3 Normal Modes

L

Ultimately, we want to solve the nonlinear quasigeostrophic
potential vorticity equation (2.15) subject to the nonlinear
boundary contitions in (2.21) and (2.23). However, if the method of
separation of variables is used to solve the linearized problem in

the case of a flat bottom, a set of z-dependent eigenfunctions

BT |- R I Y- |

f; (z), called the normal modes for p', are found. They obey the

vertical (structure) equation:

4fi) + 0 f =03 §0,1,2..., (2. 24a)
E 11

Rl =
=l

with

df, (0) _ df, (D)
@ a

=0; i0,1,2,..., (2. 24b)

V2 is called

where A is the corresponding eigenvalue. Ai'
the radius of deformation of the ith mode. Since the f.(z)'s
constitute a complete set of orthogonal functions of z, the solution

for the nonlinear problem can be cast as

p' = Z pi Ly, tf(z). (2.25)

i

.......
_______
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In view of (2.8), (2.9) and (2.14), we can also write

(u,v) = [ Z U (xg,t)fi (z), va (x,y,t)fi (z)],
i

i

ot = ) D iy (@)
i

and

N o= Z ni(x,y,t)hi (z),
i

Mwef{df/aamdhﬁw?{/“. Futhermore, the

modal-amplitude functions are related by

1 L
( -%P5, 3Py,

(ui V5 ) =
p;io dy axX

' 2
- *:
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(2. 26)

(2.27)

(2. 28)

(2.29)

(2.0)

(2.31)

Because the vertical displacement n is intimately related to the
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commonly observed sound speed (or temperature), it is used here in

place of w.

In (2.25) to (2.28), the vertical structure of p', (u,v), p' and
n is decomposed into normal moées. The modal decompositions can be
achieved by first solving the Sturm-Liouville problem in (2.24) for
the f; (z)'s (the normal modes for p') and a;'s with a known

NZ

, one then evaluates the f'i(z)'s and hi(z)'s with
f:(z)'s, accordingly. On the other hand, one can first obtain the

normal modes for n by solving an equivalent eigenvalue problem:

As
f hy + 1 N hy =0;10,1,2..., (2. 32a)
dz 0

21 ? 1
with
hi (0) = h.i (-D) = 0; 'i=0,l,2.o-.o (2.32b)

This is done by Mooers (1975) in his investigation of 1inear waves
and the corresponding sound-speed perturbations in a flat-bottomed
ocean with no mean flow. Equations (2. 32) can be derived directly
from (2.24).

The sound-speed perturbation field sc(x,y,z,t) is created by the

vertical displacement of the surfaces of constant sound speed:

d d
sc = -n [ __cylz) - __cul2) ], (2.33)

dz dz

nabmatnhe . Adondnedondindmaddn it
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where c, and ch/dz are the mean profiles of sound speed and its

adiabatic gradient arising from the adiabatic expansion or
compression of a rising or sinking volume of fluid, respectively.
The quantity in the bracket is the potential gradient of sound speed
(Flatte et al., 1979). Unlike the case for p', compressibility must
be taken into account in the evaluation of sc because the adiabatic
gradient of sound speed is not small in comparison wi'th its
potential gradient and adiabatic gradients do not contribute to

fluctuations. A modal representation of sc is

€ = - Z ni(x,y,t) fogi (z), (2. 34a)
i
with
d
fo9;(2) = hy () - [cpgdac,(z)]. (2. 34b)
z

1
fogi can be interpreted as the vertical anomaly of sound speed -
per unit displacement of the ith mode. The buoyancy frequency ?

profile N(z) measured during the tomographic experiment in 1981 is

plotted in Fig. 3.3, from which the first three baroclinic normal
modes for p' (or (u,v)) are evaluated and plotted in Fig. 3.4. The
corresponding normal modes for n and & are also evaluated,
renormal ized to have maxima of unity and plotted in Fig. 3.5 and

3.6, respectively.
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s The description of the modal solution for quasigeostrophic
motions would be incomplete without the horizontal (structure)

’Z-l‘.: equations that govern the modal-amplitude functions pi(x,y,t).

\ Briefly, (2.15) is multiplied by f (z) and p' is replaced by its
{* modal representation in (2.25). Integration along z is then
.':\
performed to eliminate the z-dependence of the equation. This

elimination is accomplished with the use of the orthonormality
- condi tion
'A: 1 AP
ﬁf f (2)f (z2)dz =5, , (2. 35)

where Sin is the krononeker delta. For more details regarding the
AN procedure for the orthonormalization, one can consult Flier] §
(1978). The resulting equations are f
X 3 2 2 1 2 i
J [2 (7%-x )+s° Ip! + Y ) eisndlei s (Vgmapieyd
‘.{:.- 3‘{ VH n -a—x n ;;?— i 1Jn 1 vH n"J !
:.‘-' 0 1 J .:
::"J 'fo \
= = ¢ (D) Z Jpi b (D)5 n0,1,2,..., (2 36a) 2
‘(-\,.‘ T 1 N

’ where
0
1 ,

| in * T’f (2 S (2)f, (2)dz. (2. 36b)
- )]
. In general, the modes are coupled becaus: they interact with the
<
, bottom and with each other so energy can leak from one mode to

another. But in linear theory and in the case of a flat bottom, the

modes are decoupled.
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2.4 A Mean State

Let us now introduce a depth-dependent weak mean current v(z).

By "weak", we mean
¥ << v, (2.37)

so that v is small enough to disallow dynamical instabilities. The

mean current can also be decomposed into normal modes:

v=[ Z uf (2), Z v f (@)1, (2.38)
n n
where Un and Vn are the constant modal amplitudes of the

eastward and northward mean currents, respectively, in the nth
mode. In general, the kinetic energy of the l1ower modes dominates,
s0 that the mean current can be parameterized by only a few modal
amplitudes, and only these modal amplitudes appear in the
horizontal-structure equations to represent the effects of the mean
current on wave propagation. From the geostrophic relation we know

that the associated mean variation of pressure is

p' = Z Py fn(z), (2.39)
n
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E'n(x,y) = p*fo(-Gny"\?nx). (2.39b)

Of course p' must satisfy the time-independent quasigeostrophic
potential vorticity equation (2.15), implying that the mean
modal -ampl itude function E'n must satisfy the corresponding
horizontal equation (2.36a). Note that there are mean variations of
p» n and éc as well, and a zonal mean current over a flat bottom is
always a possible mean state.

Let us denote the modal amplitude function of the fluctuating
pressure in the nth mode by »_ such that

n

E'n =B'n(xd) + nn(x,y,t). (2.40)

It follows that (2.36a) can be written as

- - 2
‘V -x )80 I+ > e (W2 + V. 2 ) (7542 )0
H vl ijn i lay H %j

f
o 1 ndlrgs (Vpaghng] = - % (.0 F (D) ny,b);
Tp 0 Z “1 VH ‘IT —D Z 1 1

ij i

n=0,1,2’unto (2041)
In the following analyses of wave propagation, we restrict the
bottom slopes bx=ab/ax and by=ab/ay to be constants. This is
the same as requiring the nonlinear terms in x and y of the Taylor
series expansion of b about the origin to be of order EZH/L in

distances of order L. In addition, we require small slopes such that

........................
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|bx| and {b << /L, (2.42)
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for preventing the existence of bottom-trapped waves.
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-t 2.5 Dispersive Primary Waves A
- Previously, McWilliams and Flier1 (1975) have shown that over 90 >
percent of the kinetic energy in MODE was contained in two empirical ff
i? orthogonal vertical modes that closely resemble the barotropic and :5
5 the first baroclinic modes of Rossby waves. Richman et al. (1977) ;
'ﬂf have shown that about 90 percent of the potential energy, again in 73
4
- MODE, was contained in the first three baroclinic modes, with 65 D
% at
? percent of the energy being contained in the first mode alone. é%
o Moreover, by decomposing the CTD profiles obtained in the —7
;~,; tomographic experiment into the normal modes, we have consistently t

found that the potential energy of the first mode dominates (Ch. 3,

Sec. 3.3). Therefore, without discarding the major features of

s 0

mesoscale perturbations, we can set nn=0 for n>1 in the horizontal
equations (2.36a). The equations consisting only of the Towest two

modes can be written as

¥
'
e s LI
PR ctea
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Lo(wo)

1 2 2
-C.(n,) - (I 7, N/ uma ) v,y ) ] (2.43a)
0' "1 ;;Ta 0*VHD IPVH"1

and

4

S5 1 2 2

- Lyl = -Cylay) - p—;f—[em"( Vim0 V)
0
- 1

.
b

i

W
e
\1
LR
Y
-

+

Iy, (Ja-2)n,] (2. 43b)
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&b where

2 2 3 -9 _3 2.'0 9 3
Ly = — Vpte_*lug_*v% IT/g* (b, __-b ) (2.43¢)

s
-
-
]

L (2 te g Ty ) (TR ve s, (T, T, )T

-xq )8 *u v “A.lte u, *tv

3T H"1 T Oa—x OW H"*1" ~"111 lﬁ IW H
f

0.2 3 3
+ Y201, b, ) : (2. 43d)
an 3y

and

('a _a)(vz )fof(-D)( ’ a) 0,1, (2.43e)
u +y A )t b -b s n0,1, . 43e
I— l—Py H *n 3 ! —_— X

[
n

3xX 4 ax xay

~_ ¥

are linear operators (note that xo~0). Before seeking the wave

solutions for L and T, We make the following observations from

(2.43): (1) modes are linearly coupled as denoted by Cn("m)

because the fluid motions interact with the mean current and the
bottom slopes, and (2) just like the mean current, the current
associated with a wave can advect the vorticity of other waves as
:::Z::f denoted by the Jacobians, hence creating nonlinear effects.

- The advection of vertical planetary vorticity south to north,
which is proportional to the largest term eann/ax in Ln("n)’

is responsible for the propagations of planetary waves. Whether the
linearization for the wave motions is valid or not depends on the

smallness of the ratio, v, of the magnitude of nonlinear terms to
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the magnitude of Bawn/ax. Qualitatively, the nonlinear terms are
of order Uzp*fo/L2 and sawn/ax is of order ep*fOU. Thus

we obtain, approximately,

v ~ u/L2. (2.44)

By using the typical values of U, L and 8, we obtain v~0.25. This
is not a small value when compared to unity so that nonlinear
effects could be important. However, quantitatively, v can be much
smaller depending on the wavenumbers of the interacting waves. The
quanti tative estimation is defered to Sec. 2.6.1. Llet us assume for
the moment that v<<1l. By the assumptions of small bottom slopes and
weak mean current, we know that the ratio of the magnitudes of
Cplmp) to L (x ) is much smaller than unity, and for

convenience, let us assume that this ratio is also of order v so
that we can construct the solution for T, as a perturbation series

of powers of v such that

. ,,n‘O) + urf” b orernnnn (2. 45)
with “r(ai+l)/“r(|i )"'v. We will call the zeroth-order

(0)
n

solution » and the first order correction ":51) the

primary and secondary perturbations, respectively.
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In the zeroth-order approximation, the horizontal equations

(2.43a, b) are linearized and decoupled:

Ln(rrrEO)) -0 ;n0,1. (2. 46)

2.5.1 Dispersion And Phase Velocity

Equation (2.46) admits a free-wave solution. The properties of
these waves can be investigated using a triple Fourier transform.
let the complex spectrum (or the Fourier transform) of the
modal-amplitude function » (x.y,t) be Bk, 01 00,) such
that

nr‘f” (X,y,t)= Wn(kn,l n,an)ei (kx4 ny'°nt)d<nd1 do . (2.47)

The spectrum shows how the pressure in the nth mode is distributed
in the wavenunber-frequency domain, the amplitude of each individual
wave being infinitesimal in a continuous spectrum. In the case of a
discrete wave in the nth mode with wavenumber vector (k,1) and

frequency o, bnl wouid consist of two impulses with equal

ampl itudes located at #(k,),s). The area under them is the
amplitude of the wave.

By Fourier transforming (2.46) and then cancelling bn, we find
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that the waves in the nth mode (n=0,1) must satisfy the dispersion

relation
An(kn,ln,an) =0 (2.48a)
where
8 (K, o) = (kK3*124x V(o *s0 )*k (8*es_ ), (2. 48b)
n"n’>n*n"="n nn""n "n" 'n n
600 = -(Uok0+V0]0), (2- 48b)
2..2 2..2
- kitly = - kst -~
d0y = ~[ky(uste 1 '1 u,)t (vate 1 '1 v.] (2.48c)
1 140 11}‘7‘7{"‘ 17 "1Y70 11L——2——E——— 1
ky 17+ ky ¥15+2
1’171 1'1 1%
and
f 1
8. = CFE(D)(b - "b.). (2. 48d)
n e n y-k— X
n

By rearranging, we get

-k (s*ss )
(o,*60,) = n n (2. 49)

2,42
knﬂn“n
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As expected, the mean current causes Doppler effects given by
6on's, which vanish when there is no mean current. It is seen
B T that the propagation of barotropic waves are not affected by mean
baroclinic currents, and the contributions to Doppler shifts from
mean baroclinic currents to the wavefrequencies are minor for
baroclinic waves with wavelengths much longer than the radius of
de formation AiUZ, (that is for waves with
kf*]f«xl).

It is the small latitudinal variation of the coriolis parameter
(or the g-effect) that allows the propagation of waves with
subinertial frequencies by changing the relative vorticity.
However, the g-effect on wave frequencies can be modified by 88, in
the presence of bottom slopes. This is so because the slopes modify
-t the vertical velocity and hence change the relative vorticity also
(see (2.10a) and (2.11)). The modification of frequencies caused by
the longitudinal bottom slope bx is small when waves are
propagating zonally, that is when ln/kn«l. The g-effect is
" enhanced or reduced depending on the direction of rising (or
falling) topography and the direction of wave propagation. Because
- the energy of baroclinic waves is trapped more in the upper water

column than that of the barotropic waves, baroclinic waves are less

N affected by the siopes (note that lfl(-D)l <fo(-D)=1 in (2.48d)).

ihndbuafingocl SERMN ol ndei




The phase-velocity vector of a wave in the nth mode is

c o g*ss éa k B+éB s0 j
= G = (MM =" v M, n . M. (2.50) 5
K 1 2,2 k 1 1
N nn knﬂ n“n n n kn + n”n n g

The east component of [ is almost always negative because of
1,;. siall sTopes and weak mean current that usually imply 8> |<sen| and
B/(k§+1§+x)> Pon/knl. This feature of westward phase

propagation is generally observed in experiments.

o

By rearranging (2.49), we get

+ +

(k, +L % 12a2 o (L "2, (2.51) R

2 an’é 9% 2 on"’G o .4

Since kn and ]n are real for propagating waves, the R.H.S. of Eg‘

(2.51) must be positive such that

Vo
TSN

e B
o < (8*68_) - 6a_, (2.52) o
n —2—— n n

implying that there is a frequency limit for wave propagation. In
general, the upper cutoff frequency depends on mode number,
wavenumber, mean current, and bottom slope. Because

x(;]jz»xivz, the cutoff frequencies for baroclinic waves

are much smaller than those of barotropic waves.
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Y P )

(0)

The representation of ™" by a continuous sum of its

[ 1.3

wavenumber-frequency components distributed in the three dimensional

!
1
j

wavenunber-frequency spectrum bn(k ,on) is adequate but

n']n
nolonger necessary due to the dispersion relation. A full

description of the fluctuating field can be provided just as well by

the simplier two dimensional wavenumber-spectrum bn (kn,ln)

such that

v

"rf°)= fbn(kn,ln)ei‘kn"”ny“’nt) & dl . (2.53)

e R N

PR T

- Simme X N N & 2 A
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’ 2.5.2 Narrowband Processes And Group Velocity
For fluctuations due to narrowband processes in the wave-number
spectrum, bn(kn,ln) contains pulses of finite width and
."-'_1_"', "rfm can be represented by a sum of modulated waves. With a
= total number of N pairs of pulses in [bnl and with the ith pair
being located at *(km-,lm-), we can write
N
o O, y8) = S a.(xy,thosk X" y-o  téy ), (2.54)
T XYL = Z ni x> ni* ni¥ i il 1
i=1

where each modulating amplitude (or envelope) ap; is slowly
varying in space and time as compared to its carrier which has a

pnase constant vy g and a frequency o, that satisfies the

ni
dispersion relation. The slowly varying nature of L in x and y

is implied directly by the narrowband processes in the wavenumber

Pk e
.

3
.

spectrum; the slowly varying nature in t can be verified by

o

N . 8
P, 2
Fa

Pa
)

investigating the group velocity.
While the phases of the carrier waves are propagating with the
phase velocities, the phases of their envelopes are propagating with \

the corresponding group velocities. The group-velocity vector can

> be evaluated by
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The result (which is not shown here) is a complicated vector
function of k, and ]n’ indicating that in general the modulating
envelopes can propagate in any direction and that the group speeds

are much smaller than the cc-responding phase speeds. Since an;

(0)
n

is varying very slowly in time and space, = can be

approximated Tocally by a sum of discrete waves with constant

amplitudes a j» Where a; is equal to the area under the ith

n 1

pair of pulses in ldnl.
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2.0 Mode Couplings and Nonlinear Interactions

Since the coupling and nonlinear terms in the horizontal
equations are not identically zero but finite, intermodal wave
forcing and nonlinear wave-wave interactions must occur during wave
propagation. In order to investigate coupling and nonlinear

effects, we must proceed to the next order in v.

To order v, we have

(1) (0) (0) 2.(0) (0) 2 (0)
LO(" ) -Co(nl ) - [J( VH )+Jd( v

0 (2 56a)

- and -
" :

(1) (0) 1 (0) 2. (0) (0) 2 (0)
(1r ) = -C,(n ) - [e J(1r v J+d(x v
Ly 1T T 111
+ 1oy (0),(v2-x )at0), (2.56b)
- "0 H*1' ™1

70

It is seen that the zeroth-order solutions “(0)

are now the k
forcing mechanisms for the first-order terms w(l). This -
implies that secondary waves of smaller amplitude can be generated
by the primary waves through their nonlinear interactions and the
Tinear couplings. If some of the forced (secondary) waves are at

resonance, that is their wavenumbers and frequencies also satisfy

the dispersion relation (a secular effect), their amplitudes will
not remain small but will grow, and at some time will become

dominant among all the forced waves.
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:-‘ Be fore going into the subject of forced and resonant waves in

\ more detail, we will first come back to the issue of whether the

":A effects of the nonlinear interactions of primary waves are small or

Jj“.; not. The issue is important because the validity of “he asymptotic

\ solution constructed as a perturbation series in powers of v depends

:'--' on the smallness of v.

: 2.6.1 Magnitudes Of The Nonlinear Terms

_, It was mentioned earlier that v is of order U/L23'0.25 and is

not qualitatively small. But quantitatively, it can be smaller

L;: depending on the wavenumbers of the interacting primary waves. This

fact will be demonstrated in this section.

f::jiﬁf. There are three cases that we need to consider. They are the ,:
interactions between (1) two barotropic waves, (2) two baroclinic =
;.-: waves and (3) one barotropic and one baroclinic wave. We do not

need to consider cases for more than two waves because each 1
J combination of two can be considered seperately. When we say a !
,::'. wave, it could imply either one wave that is associated with a
discrete (or narrowband) spectrum or one infinitesimal group of :
- waves centered at some wavenumber in a continuous spectrum. |
\ In cases (1) and (2), the only nonvanishing nonlinear term is

<. proportional to J( n(O) vz (0)) with n=0 and n=1 for

the first and second cases, repectively, and

& (0)

(2.57)

.............




where ap; is the ampli tude and °n1'=knix+]niy'°nit+7ni is

the phase of the ith wave; i=1,2. Note that
m-Z‘/:[b (km, rn)dk d] in the case of a continuous

spectrum. The nonvanishing Jacobian term can be cast as

(0) 2_(0) 2 2
Ir "y, V=dlacose 1,/ pa jcose ) +dla , cose ).\ pa Hc0s ,)

2 2
*‘J(anzcosanz ,VHa nlcosanl)*'J(an‘,gcosan2 ,VHa n2°°s°?2)‘ )
2.58

But since

2
Ja jcos ’VHanicoseni) =0, (2.59)

(2.58) becomes, after performing the Jacobian operation,

2 2 2 2
x[ cos (°n1+°n2) <o0s (°n1 '°n2) J. (2.60)

J(n (0) VZ (0) _ 1

It is seen that the magnitude of the nonlinear term depends on the ‘j
di fference of the squared magnitudes of the wavenumber vectors and 1

" '1
the difference of the directions of propagation; the smaller the

di fferences are, the smaller the nonlinear effects. In the limit

when the waves have either the same wavelength or the same direction
of propagation, there cannot be any nonlinear interactions, and the
waves will be an exact solution to the quasigeostrophic vorticity
equation. From (2.59), we notice that a single wave is always an

exact solution.

.......
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In case (3), with

T 4 “ " .
-t gy, ‘r‘&‘f“f'-
y 1" .' £ 2 4 3

M el iy

n(()O) = 25,C056y (2.61a)

”
£
»

tl'

and

DI
.X’ J. ., * l.

u{O) = 2,,C058;, (2.61b)

the sum of the nonvanishing nonlinear terms is proportional to

+ QX
J
.‘l'“—l-l",'. [

(0) (0) (0) 2 (0) 1
J[wo (VH-xl) Faa "V ym )=_2a01a11(k11101-111k01)

2 12,
x[(k]*17,%2)- (k01 01)][cos(001+011)+cos(701 =0y,)]
2.62)

;’;'k'; It is found here that the magnitude of the nonlinear term again

:';ﬁ-' depends on the difference of the directions ~f propagation, and also
depends on the di fference of (kgl'flfl)*xl and
f::-}. (kglﬂgl). Similarly, the smaller the di fferences are,

";:;;; the smaller the nonlinear effects. There would not be any nonlinear

fls
"'
- x

BN edecinadniiin AN At el Koo i

interactions if either the waves of di fferent modes were propagating
in the same direction or the difference of the squared magnitudes of
the barotropic and the baroclinic wavenumber vectors were exactly )
Al.

In conclusion, inorder for the (asymptotic) theory of weak

wave-wave interactions, which predicts the propagation of forced

<A SRS

waves and resonant interactions, to be applicable, the wavenumbers

of the primary waves must be so arranged that they make w«<l.

...........
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2.6.2 Forced Secondary Waves

In this and the following sections, we will discuss only forced
and resonant waves that correspond to two primary baroclinic waves.
The other two cases can be investigated by a similar procedure;
their results are summarized in tables (2.2) and (2.4) without
futher discussion. For the case of more than two primary waves, it
is obvious that the forged solutions due to each primary wave in the
linear coupling terms and each combination of two primary waves in
the nonlinear terms can be summed together to give the total
solution.

Secondary perturbations are driven by the primary dispersive

waves. For two existing primary baroclinic waves such that

(V)

w, =41,C0581;%a;,C058, 5, (2.63)

the governing equation (2.56) for the secondary perturbations becomes

2

a,qa
117120, 2 .52 2

=-Co(a11cos 911) -Co(alzcos 912) -2p

X (klzl 11'k 11] 12 )[cos(ou*olz) -cos(on-G12 )] (2.64a)

Lo(tr(gl))

and

(1) €111%11%2.,.2 .2 2 2
0
x[cos (on+012) <o0s (011'012) 1. (2.64b)

) AT L TSN ) e - . i st ~ R R
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Note that beside secondary baroclinic perturbations, secondary
bDarotropic perturbations are also possible due to mode coupling.
(Note also that mode coupling can modify the frequencies of the
primary waves.) While the forcing produced by 1inear coupling has
components that oscillate with the same primary wavenumbers and
frequencies, the forcings produced by nonlinear interactions have
components that oscillate with the sums and di fferences of the
primary wavenunbers and frequencies.

(1),
n

The equations for the = s are linear but nonhomogeneous,

containing simple harmonic forcing functions in space and time;
therefore the steady-state solutions have the same harmonic forms as
the forcing functions. By expecting a phase lead or lag of 90°, we

can write down the solution as

4

(1) . :
L I Z bO'i s1nag, (2.65a)
i=1 l:-f_
and ::'_
(1) -
171 = bliSinali ’ (2.65b) );'
_-.:\‘!
994=212° With the use of (2.64), the wave amplitudes bm- are \1:
evaluated as J
y

.......
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- Q , (2.66a)
8otkytkypsl 111209117 012!

- -Q , (2.66b)
8o ky1-Ky25T 11711209177 912)

- .= 2,2
] SLT 1 12 (£ D (D) (b kg -, 1,4 )]
LTk 1o V110 (K212, ) <(F /D) F, (D) (b Kin-b.1:1)]
_ K12V T2k p*T 7o) -{fy/DIFy ¥ 127bx112
’ {
§
-€ Q b
- 111 (2.66e) :
8y lkyykypal 1% 1259017915

€11 ©

(2.66f)

81k y-kyast 1971120903793

dy,d
11%2 ., 2 ,.2 2,12
Ll *1y ) -k T kT g7k g Typ) - (2.669)

0

.......
--------

« . .
......................................
.....................
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w The secondary perturbations consist of forced waves. In this
“;fff case, there are four forced barotropic waves and two forced
baroclinc waves. Their amplitudes are a factor v smaller than those
of the primary waves except at resonance. Moreover, they need
continuous forcing to exist, that is the primary waves must be quite
permanent for the forced secondary waves to exist.
;Z 2.6.3 Resonant Secondary Waves
) Wwhen a forced wave of the nth mode with wavenumbers
(knf’]nf) and frequency o0 satisfies the dispersion relation
,jiﬁ: An(knf']nf’°nf) =0, (2.67)
S
s
" resonance occurs and (2.67) is the resonance condition. At

resonance, the expressions shown in the Tast section for wave

ampl itudes are nolonger valid because the denominator is identically

zero and the resonant wave amplitude is growing linearly in time.
The two forced barotropic waves with phases 1 and ®0

cannot be resonant because the wavenumbers and frequencies that

satisfy the baroclinic dispersion relation can never, at the same

time, satisfy the barotropic resonance condition due to the form of

the dispersion relation. However, the other four with

g Kneslnp) =tk %12:111 9 12) 0 oppmoyytogp and n=l,2
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are possible resonant waves. Suppose resonance occurs at n=1. Then
at the sums of the wavenumbers and frequencies, there will be a
resonant baroclinic wave having the form bn(t)cos(ou+012).

With the use of (2.64b), we find that the growth rate of the

ampl itude is

db €411Q
t 2 .42
(kn fﬂ nf' A )

The growth rates evaluated at resonance for the other three
possibilities are shown in table (2.3).

It is interesting to point out that the growth rates do not
depend on the mean current and the bottom topography, but are

B PR . .
.‘.nni.

proportional to the magnitudes of the corresponding nonlinear terms.
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Table 2.2

Interaction Between 2 Oth-Mode Primary Waves

e A M e el Kooltidinbivibons

mode primary wave secondary wave resonance growth
amplitude phase amplitude phase rate
Oth %01 %] bp;  &i*egp  Possible g4
352 %2 bpp &9y  Possible gy
1st b11 %1 no
bjo o no
% 17%01*01Y %1% Y01
02 U2 02 02 02
2 .42 2 ,.2
-Q
P01 T4 ) 02 (k 1241
02 80 'koko2: 102 9290 1%%2 0rKo2 orlo2

b 02 02 02 02 02 02
11° 5y (k
12 01°701*%01

02 02 02

.......
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Table 2.3
Interaction Between 2 1lst-Mode Primary Waves
mode primary wave secondary wave resonance growth
amplitude phase amplitude phase rate
b02 911912 possible 992
X
b3 °1y no
bog 7 no '
1st a1, 91 b11 °11+°12 possible 911
2y, 817 b12 811212 possible 910
01K X 13 -o g
12 12 12 12 12
2, 2 2
-Q Gz Q
P01~ T ) 02 (k 12 +(1 )2
02 f0% 11K 1201117 120004000 11°%12 1112 ]
]
—_, 2 ,—,2 2, .}
bg 3= 12 12 12 12 12 12 -
04 bytkypstygeegy! .
12 12 12 4
by = €119 93 ‘u? ]
S PN SN B ) 12 (k 1241 )2+ ]
12 1% 12 1= 120011012 11°°12 1212 ™ -
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Table 2.4
Interaction Between 1 Oth-Mode and 1 lst-Mode Primary Waves
mo de primary wave secondary wave resonance growth K
ampl itude phase amplitude phas> rate
1
uth 201 %1 o1 °n no ?
b12 891911 possible 912
b13 91 no
90170 1% 101 -%1%" Y1
11 11 11 11 1
Q=ag 12,0 0kG 1115 )=ty #F ) B0k 10 kg 1407 20%F
1
R
Tk D E 2 (F /) (b Ky -bo1 ) ]
bgy=— 1 1 111 1770 Py 1171 1
"o“‘n’1 11°°11° 1
- - Q
12 4 ("11- 1227158 12091129 ! 12 {ky 4tk 12) 907y
01 an (K f
0'ko1:7015%01
el e IR T e e
PR PRI R WP, WS ......{.._.Lfk‘ Lo :‘;‘l ':__.:\_-_ 'LA.'A.L-_L. Lt o ~—1- -.”' ._"::,_::"'-; 1:;.*;.;: L ;_;":
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While the baroclinic planetary waves produce significant changes

67 -
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CHAPTER 3 R

THE FORWARD PROBLEM: RELATING OBSERVATIONS TO WAVE PARAMETERS i
5

3

b

)

in both the horizontal-current and vertical-displacement fields

(i.e., temperature field), the barotropic planetary waves produce
only significant changes in the horizontal-current field and very
little vertical displacements. Thus, the baroclinic waves are
observable through temperature measurements alone but the
observations of both types of waves must be accompl ished with
combined measurements of current and temperature,

In our investigation of the existence and dynamics of planetary
waves, we used the different types of temperature measurements
obtained in the 1981 QOcean Acoustic Tomography Experiment. Data
were provided by The Ocean Tomography Group. Although current
measurements were also available, they were not used in the study.
The current measurements lack spatial resolution since current
meters were mounted on two enviromental moorings only (but we have
used the temperature records from those moorings). Thus, we are
limited to the detection of the baroclinic waves only. Three types
of temperature measurements were made. They are the in-situ
profiles, the point measurements, and the integral measurements
(i.e., the acoustic travel times), obtained from the CTD surveys,

the moored temperature recorders and sensors, and the acoustic

tomographic array, respectively.
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In order to extract information on the baroclinic waves from the

temperature measurements, the forward problem of how the temperature

field and its measurements are affected by the evolution of the

waves must first be resolved. This is done in this chapter in
conjunction with the last one (Ch, 2). In the last chapter, we
studied the theory of planetary waves by reviewing the Titerature.
We saw that the space and time behavior of the wave-induced
perturpations of sound speed (or equivalently of temperature) are
constrained by the modal dispersion relationships and characterized

Dy the wave parameters such as the wavenumbers, wave amplitudes,

]
3
4
R
;]
:
A;-i

modal amplitudes of the mean flow, etc. In this chapter, the
objective is to develop the model equations that relate the data to
the unknown parameters that characterize the wave-induced

perturbations and mean-flow induced variations of sound speed. In

KRR - T

cn. 5, the model equations are inverted for the wave parameters. Of
course, one can use either the perturbations of sound speed or
temperature as the observed dynamical variable in the model
equations, for the two variables are intimately related and
empirically proportional to each other (Wilson, 1960 and Medwin,

1975). We prefer to use the sound-speed perturbation sc.

We begin in this chapter by giving a brief description of the
1981 Ocean Tomography Experiment. For a detailed description of the
experiment, the reader is referred to the Ocean Tomography Group
(1982). Next, the empirical relation between temperature and sc and

the integral relation between perturbation of acoustic travel time
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and sc are discussed. We also discuss the data set actually being
used in the model equations for the parameter estimations. The data
set was obtained by filtering (daily averaging) the point and
integral measurements and compressing the profile measurements.
Finally, we present three plausible dynamical models for wave
propagat‘:ﬁ;\' and develop the model equations. The space and time
behavior of the wave-induced sc is constrained and characterized
differently in the different models. By fitting the different
wave-propagation models to the data set, the wave dynamics are then

estimated inCh, 5,
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acoustic inverse scheme of Munk and Wunsch (1979) for monitoring the

3.1 The Experiment
In the spring of 1981, the Ocean Tomography Group conducted the j
first field test of a full tomographic system in a 300 km square q
"
south-west of Bermuda over a period of 4 months (Ocean Tomography .
Group, 1982). The goal was to test the practicality of the g
|

ocean interior at mesoscale resolution. In order to evaluate the
performance of the tomographic system, the region was also measured
by traditional techniques during the same period so that a basis for
comparison could be provided. The tomographic data was inverted by
Cornuelle (1983) and Cornuelle et al. (1985) on a daily basis; the
daily tomographic maps he generated compare favorably with the
ship-based objective maps. This work demonstrated the great
potential of acoustic tomography for adequate and effective large
scale monitoring. Here, our chief goal is to investigate the
existence and dynamics of planetary waves, and in order to make the
best estimates of the wave parameters and wave dynamics, we
incorporate all types of temperature measurements in our inversions.

The experimental square was centered at 26°N, 70°w over the

. Hatteras abyssal plain and just south of the region in which MODE
e was conducted. The ocean bottom here has a nominal depth of 5400 m

S and a very small depth variation of 300 m over the square. The

tomographic system itself consisted of a horizontal array of 4

sources and 5 receivers moored at a nominal depth of 2000 m
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surrounding the square. All the acoustic sources (Si: i=1,2,3,4)
were moored at the western boundary, 4 of the receivers (Ri;
i=1,2,3,4) were moored at the eastern boundary and the remaining
receiver (R5) was moored near the northern boundary of the square.
Using the signal processing technique of Spindel (1979), a 224 Hz
carrier modulated by a repetition of a maximal length shift register
sequence that lasted nearly 3 minutes was transmitted hourly on
every tnird day between each of the source-receiver pairs, and
through a form of matched filtering, the multipath travel times of
the sequence were estimated. Although the transmissions were
intended to last for 4 months, more than half of the receivers had
stopped recording data after 80 days into the experiment due to

failure of the batteries. The motions of the acoustic moorings were

tracked by bottom-mounted acoustic transponders. The tracking was
needed to prevent the misinterpretation of the large changes in
travel times due to mooring motion as changes due to oceanic
perturbations. However, some of the tracking data were missing and
hence mooring motions must also be dealt with in the model
equations; that is in addition to sc, the uncertainty of the the

positions of the sources and receivers must also be modelled.

NI W
R
P S .

(Cornuelle, 1983 contains a detailed discussion of how to model the
moor ing motions.)
The horizontal geometry of the tomographic array is shown in

Fig. 3.1. Besides the 9 acoustic moorings, 2 environmental

0 BTG S
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moorings, denoted by El and E2 in Fig 3.1, were also deployed.
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28°N

26°

24°

Figure 3.1. The horizontal geometry of the 1981 Ocean Acoustic
Towography Experiment (from Cornuelle et al., 1985), showing 4
source moorings (S1, S2, S3 and S4), 5 receiver moorings (Rl, R2,
R3, R4 ana R5) and 2 enviromental moorings (El and E2). The diagram

also shows the topography of the experimental region.
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Current meters were mounted on the environmental moorings but not on
the acoustic moorings. A total of 32 temperature-pressure recorders
and temperature sensors were distributed on the moorings and mounted
at different depths. However, most of them were not useful for our
purpose because they were mounted either in shallow (above 300 m) or
deep (below 1600 m) water, where information on the 1owest

barocl inic-mode planetary waves is hardly obtainable, While the
temperature field in the upper layers cannot be described by the
lTower modes alone and contains strong higher-mode perturbations, the
data obtained in the deep zone contain little wave signal (i.e.
shows very little variation).

Three CTD surveys in March, May and July and 2 AXBT surveys in
April and June were conducted. Each CTD survey lasted 2.5 weeks and
had o5 casts distributed evenly over most of the square, but denser
in the middle. Each AXBT survey had drops distributed at the same
locations as the CTD stations, but such drops are 1imited to
surveying the upper layer of the ocean only, and thus are not useful

for our purpose.
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3.2 Observations of sound speed perturbations.

3.¢.1 Profile and Point Measurements
The speed of sound in water, ¢, is given by the square root of

the ratio of the adiabatic compressibility and density (a derivation

of the relation can be found in Clay and Medwin, 1977). As the
adiabatic compressibility and density depend on temperature T,
salinity S and pressure p (or depth -z) so does c. Empirical
formulae for the determination of ¢ from T, S and p or z have been
generated by oceanographic acousticians using regression techniques
and polynomial least square fittings of l1aboratory velocimeter
measurements of sea water sound speed over large ranges of S, T and
p. Some of the well-known and highly accurate formulae are those of
Wilson (1960), Medwin (1975) and Lovett (1978); they give almost
identical results for the sound speed.

The empirical formulae make it possible to relate CTD surveys to
the observations of sc profiles. We prefer the formula of Medwin
(1975) for its simplicity; it is given by

¢ = 1449.2+4.6T-0.055T2+0.00029T°

+(1.34-0.010T) (S-35)-0.016z, (3.1)
where the physical dimensions of ¢, T, S and z in the equation are

ws,C, parts per thousand and m, respectively. CTD casts can be

converted to soind-speed profiles by (3.1), and a mean profile c(z)
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can be estimated by averaging all the profiles. Thus, for each CTD
cast, a profile measurement of sound-speed perturbation can simply

be obtained by

sc(z) = c(z) - clz). (3.2)

A mean temperature profile T(z) can be estimated by averaging
all the surveyed temperature profiles, By varying c with respect to
T in (3.1) and neglecting the salinsity effects, we obtain the
empirical relation between sc and temperature perturbation sT=T-T,

that is

sc = 4.65T-0.11TsT+0.00087T2sT. (3.3)

Using (3.3), time series of the sound-speed perturbation can be
obtained from moored time records of temperature.

We have converted all the CTD profiles and temperature time
records measured in the experiment to profiles and time series of

sc, using (3.1), (3.2) and (3.3), respectively.

......
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3.2.¢ Integral Measurements

The description of the acoustic field in a moving medium by an
approximate solution using geometrical optics is valid when the
changes in pressure, density and entropy of the medium are small
over the wavelengths of the sound being transmitted (Blokhintsev,
1956). Such a description is known as ray acoustics and is
appropriate for the case of underwater sound transmissions in deep
water at relatively high acoustic frequencies, of order 200 Hz and
higher. (A frequency of 224 Hz was used in the tomographic
system.) The ray solution, that is the geometrical optics
approximation, for the acoustic pressure at a frequency wy can be

cast as
Py, t) = A(x)eiualeolx)-t], (3.4)

where c* is an arbitrary constant reference sound speed, and A is
the amplitude and wC*o is the phase of the time-independent
component of p,. Bl ockhintsev (1956) has presented a detailed
derivation of the differential equations that govern A and e. The
equation for e is commonly known as the eikonal equation, relating o
to the perturbed sound-speed field C*sc and the flow field v during

a transmission by

|76]? = (cx-v . Y012/ (@vsc )2, (3.5)
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In general, sc and v vary in both space and time, but they are
considered as time invariant in the derivation of (3.5), because
they vary on a time scale which is usually much longer than the
duration of a transmission so that the ocean can be assumed to be
T~ “frozen" momentarily. We will not concern ourselves with the

: equation for A, which is known as the transport equation, because A
ShE is not directly related to the travel-time data. However, it is
worth mentioning that the solution for A is important for the
identification of multipath arrivals. The interested reader should

consult Spiesberger et al. (1980) for ray identifications.
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Ugincius (1970) solved the eikonal equation using the method of
cnaracteristics and, by proving that the direction of the
characteristics and acoustic ray paths coincide, he then obtained
the equation for the ray paths from the equation of the
characteristics. In a slowly moving and almost stratified medium

witn |v/c|?, |de/dx)/(de/dz)| and |(de/dy)/(de/dz)| being much

smaller than unity, the ray equation can be approximated by

d [ c* d (x+sx) - c*v ]

 __ATeX —_ = 0, (3.6) -‘,

ctsc

- where s is the arc length along a ray path, x=x(s) is the nominal
trajectory of the ray path in the unperturbed and motionless state
T and ¢sx=¢x(s) is the deviation from x(s) due to the existence of sc

il and v. For the case of mesoscale eddies, |!/c|2 is of order

.............
.........
.........................
.................................
.......................................
..........
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10'10 and the ratio of the horizontal to the vertical sound-speed
5

gradients is of order 107~ ; thus the ratios are indeed much

smaller than unity., The approximate equation (3.6) has the solution

of planar rays, that is rays that start out in a vertical plane will

i
|
]
1
d
1
1
!

always remain in that plane. Munk (1980) considered the effect of
horizontal mesoscale sound-speed gradients on horizontal ray
bending, but found that the bending is negligible, with the maximum
deflection angle being smaller than the horizontal fractional change
in the sound speed. By definition, a ray path is a direction of

transport of acoustic energy, and the direction is the same as the

normal to the wavefront (i.e.\/o) only when the medium is
motionless. With fixed locations of acoustic source and receiver,
(3.6) is an eigenvalue problem. This implies that depending on the
sound-speed profile, sound energy may propagate in more than one
discrete direction before reaching the receiver, that is there may

De many ray paths that connect a source-receiver pair. Multipath

propagation is indeed a prominent feature in the mid-ocean sound

channel and the feature is fully exploited by acoustic tomography in

attaining vertical resolution in the estimation of the perturbed

sound-speed field,

Ty

x

It is indicated in (3.1) that as temperature or pressure
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increases, so does sound speed. A consequence of the competition

between decreasing temperature and increasing pressure with depth,

e T
Q

typical at mid latitudes, is the formation of a sound-speed minimum
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at a depth of about 1 km. This can be seen in Fig, 3.2a in which an
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average sound-speed profile in the tomographic region is plotted.
The souna-speed minimum (or "axis") of the sound channel traps some
sound energy within it. For sound waves that progress forward in
either an upward or downward direction, the increase of sound speed
tends to refract them back to the axis. The trapped energy
propagates along numerous refracted ray paths that sample different
vertical sections of the water column and collects information about
the perturbed sound-speed field through the accumulated travel-time
changes. (Fig. 3.2b shows the geometry of some of the eigen-rays
that connected the source S4 and the receiver R3.) In a pulse
transmission, the trapped energy in the form of mul tipath arrivals
can be detected over a long distance by a receiver being placed near
or at the axis. Thus once the multipath arrivals of each of the
source-receiver transmissions in a tomographic array are identified
and resolved, they can be used alone or together with other
measurements to estimate the perturbed sound-speed field.,

For a resolved ray path that connects a source-receiver pair,
the time required for a signal to reach the receiver from the source

is given by

Tret = | (T +ec + v, 428Xy -14g (3.7)
S
XteX

where the quantity in the bracket is often referred as the ray

speed, t is the travel time in the unperturbed and motionless state
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Figure 3.2a. The averaged sound-speed profile in the tomographic |
region.
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Figure 3.2b, A ray diagram, showing the paths of 3 of the

eigen-rays that connected the source S4 to the receiver R3.
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and st is its deviation due to sc and v. It is seen that in general
travel times are perturbed in a very complicated manner, Both the
sound-speed perturbations and the currents can affect travel times
directly and they can also affect travel times indirectly by
changing the trajectories of the ray paths.

The evaluation of st can be simplified. Hamilton et al. (1980)
have shown that for any stable ray, that is any ray which exists in
the mean state and does not disappear or alter drastically its

geometry in the perturbed state, and for weak horizontal variations

in c and v, tne contribution of sx to st is of higher order than
that contributed explicitly by the changes in the ray speed.

Therefore, they concluded that the perturbed travel times may be

4

evaluated along the unperturbed ray paths without losing much

accuracy. Furthermore, for most oceanic fluctuations |ac|>>|!| and

gY o+ 4 s e s 3
-i PSP M M
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hence v may be neglected together with sx. By further neglecting

terms of order (ac/c)2 , 6t may be approximated by

6t = -8C s, (3.8)
c2
X

In (3.8), st represents an integral measurement of sc. Because of

the averaging process, oceanic fluctuations of smaller scales are

automatically filtered from st. This is one of the many advantages

of acoustic techniques over traditional techniques of spot

measurements.
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-ﬁ?Z Al though Mercer and Booker (1983) have found conflicting

i?fl evidence for the validity of the assumption'of travel-time 1inearity
(3.8) for the case of a warm eddy at temperature changes greater
than 1°C, the validity of (3.8) for the case of planetary waves and
ranges of 300 km were confirmed by us through a computer

simulation. Planetary waves that correspond to sc of order 5 n/'s
and v of order 5 c/s in the upper ocean were simulated; these

;i"; values are typical of the open ocean. Perturbed and unperturbed ray
;;Q paths over a distance of 300 km that connects a source point and a
M receiving point on the channel axis were computed by solving (3.6)
numerically with a fourth-order range-dependent ray-tracing
technique, developed by the author using the Runge-Kutta method
(Acton, 1970) and thus obtaining high numerical accuracy at long
J;:f range. The travel-time perturbations were then computed numerically
from both (3.7) and (3.8), and comparisons made. Results of the
simulated study are summarized as follow:

T (1) Travel-time perturbations of order 30 ms are found.

(2) Ray paths are practically unperturbed. The vertical and
;é; horizontal changes of their geometries are of orders 50 m and 1/2

: km, respectively. These changes are small comparing to the scales
of the mesoscale perturbations. Furthermore, negligible errors of
order 3 ms are introduced in st when the unperturbed ray paths are
nﬂ: used.

.~f§ (3) Current effects are negligible. Travel-time perturbations

'fﬂi createa by the flow field are found to be of order 2 ms.
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Al though the total error created by the assumption of stationary
ray patns and the neglect of current effects can be more than 10
percent of the signal, the estimate of a few unknown parameters is
generally unaffected by the error when a large number of travel-time

data are available.
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3.3 Data Used

It is well-known that at lTower mid-latitudes the mixed upper
o layer of the water is well separated from the rest of the ocean by a
sharp seasonal thermocline located at a depth of about 200 m
(Pickard and Emery, 1982). This large and sudden change in the
density profile, that is the seasonal thermocline, may be viewed in
X Fig. (3.3) in which we show an average profile of the buoyancy
frequency N(z) in the tomographic region (N2 is proportional to
the density gradient). Physically, the seasonal thermocline
'}.:.'- inhibits significant exchange of energy between the mixed layer and
the Tower ocean that includes the main thermocline zone
(approximately from a depth of 300 m to a depth of 1500 m) and the
deep zone (below 150 m depth), so although the upper layer is

I strongly forced by the atmospheric disturbances, the 1ower ocean can
:;_f be left unforced. Thus, an idealized unforced ocean model may be
2 used to describe the dynamics of planetary waves in the entire ocean
W colum except the upper layer.
= For these reasons and because the potential energy of the waves
is well contained in the main thermocline zone, we did not use time
-::':: records of temperature and travel time that contain information on
{}j the forced fluctuations in the upper layer or the unenergetic
siynals from the deep zone. That is, the time series records of &
': that were obseved in the upper layer or the deep zone and the
resolved ray paths that cycled into the upper layer were not used.
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Figure 3.3.
the tomographic region.
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Y
<o A
-
.
LR

L

'J
:_rfl . . S
P . 1 “-‘-.
s

1
A
r

87 K

[d
'Jl .l

’l"; e

=y
o

(Note that the moored temperature records have been converted to sc
time series.) Consequently, we have eliminated all but 7 of the &
time series and 58 of the st time series in the estimations. We
-j:.:' have also checked the deep & time series (below 1600 m): they have
jkj very little variance, which is consistent with the theory.

Bl Some statistical information about the mesoscale variability in
v the general area of the tomographic region was available from
previous experiments, in particular, from MODE. Such information
concerning time scales and vertical structures can be very helpful
in the data processing (such as filtering) needed for reducing the
noise level in the data and the size of the data set. Once noise
LT anu data are adequately reduced, more accurate and efficient

e estimates can be obtained. Note that statistical information can

el
ala o

o

also be used to provide additional constraints on the solution of -
the inverse probiem; the accuracy of the estimate is generally

improved by their application (see Ch. 4 for discussions).

Daily averaging corresponding to low-pass filtering was

'wﬁ performed on the & and st time series so that the noise produced by
"wninteresting” events such as tides and internal waves is reduced.
Furthermore, data points on every third day and on every ninth day
in the filtered time series of ¢c and &t respectively were retained
éff for the estimates. We have not lost any useful information by this
" reduction of the data because the time scale of the mesoscale motion

L~ in the area is known to be of order of 100 days (Richman et al.,

SN 1977).
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McWilliams and Flierl (1975) have shown that over 90 percent of
tne kinetic energy in MODE was contained in two empirical orthogonal

vertical modes that closely resemble the barotropic and the first

baroclinic modes of Rossby waves, Furthermore, Richman et al.
(1977) have shown that about 90 percent of the potential energy,
again in MODE, was contained in the first three baroclinic modes,

with 65 percent of the energy being contained in the first Mode

...; ...
it : D T T 34

. I SR I I}

7 WY NI

alone, Thus, it is evident that the vertical structure in the i

region is predominantly composed of only a few of the lower modes.

;:f In Fig. 3.4, we show the first three baroclinic modes of currents

. (fi(z); i=1,2,3), evaluated numerically from (2.24) using N(z)

i shown in Fig. 3.3 and normalized according to (2.35); the
barotropic-current mode is constant through out the water column and

&8 is not shown in the figure. The three corresponding

‘ii vertical-displacement modes, given by hi(z)=ngN'2dfi/dz

0=6.38x10'5 s-L s

jiz the coriolis parameter of the region, but re-normalized to have

- where D=5.4 km is the nominal depth and f

maxima of unity, are shown in Fig. 3.5. Because of the dominance of
the 1ow modes, the sc profile data can be largely reduced, and the
reduction will be discussed next,

The vertical modes of sound-speed perturbation, gi(z)'s, can
be evaluated by (2.34b). But due to the fact that the potential
sound-speed gradient is proportional to cN2 (Flatte et al., 1979),

(2.34b) can be recast as
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Figure 3.4. The 1lst ( ), 2nd (*+ + +) and 3rd (¢ 0 ¢) baroclinic
modes of horizontal current in the tomographic region, normalized to

have depth-averaged energies of unity.
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g; (z) a h (z)c(zINz)?. (3.9)

In Fig. (3.6), the gi's with i=1,2,3 are shown. Here, we have
re-normalized the gi's to have maxima of unity. Since the gi's
constitute a complete set of functions, the observed profiles of sc

can be decomposed as

CTD L
GCJ- (z) = Z d1.] gi(z)- J=1)2)39---s (3.10)
i=1

where dij represents the weight of 9; in the jth profile

schD. It can be computed easily by using the fact that the
Nni's (or (cN)'lgi's) are orthogonal to each other. We can

interpret d, ., as the observed modal amplitude of sc at the

J
location and time (x,y,t)=(xj,yj,tj) of the jth CTD cast. 1In
general, an exact modal representation of 5c§TD requires an

infinite sum in (3.10). However, because of the dominance of the
low modes, the sum can be truncated after a few terms without losing
any valuable information. In fact, quite to the contrary, the
quality of the profile data is improved since the truncation is a
filtering process in which the more oscillatory but unenergetic
higner modes are totally eliminated. An important consequence of

the truncation is that the data of an entire profile can .e

effectively compressed into a few modal amplitudes that contain
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SOUND PERTURBATION
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equivalent information. Therefore, the huge set of 5c§TD's can

pe replaced by a managable set of dij's for the lower modes in the
parameter estimations.

In order to determine the number of modal amplitudes M required

to represent each 6C§TD, we made the following calculations

with M=1,2,3 for each of the casts:

M
2
CTD 2 CTD
PFU =[1- Iacj - z: dijgi dz|/ 8¢5 dz] x 100 percent
i (3.11)
where PMj is the percentage of variance in cchD generated by

the first M baroclinic modes alone., To avoid being misled by the
fluctuations in the upper layer, the integrations in (3.11) were
performed from 300 m down. Not unexpectedly, Plj's of 50 to 90
percent were found in all the casts. This finding is consistent
with the result of Richman et al. (1977) in MODE. We have also
found that the contributions of the 2nd and 3rd modes to sc in the
tomographic region are minimal: there being less than a 5 percent
increase in the sz's and P3j's from the Plj's. As a result
of the above findings, we have retained only the modal amplitudes of
the first mode, that is a?:dlj, for the parameter estimates.

It is an interesting fact that even if higher modes do exist and
contain significant energy, they are quite transparent to the
travel-time measurements. Higher modes are more oscillatory over

the vertical colum, so that sound waves accumulate many canceling
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changes in their travel times as they propagate up and down the
ocean along the multipaths before reaching the receiver, To
demonstrate this fact, we simulated three perturbed oceans that have
the same horizontal scale (of order 100 km) in their sc. The lst,
2nd and 3rd oceans were perturbed solely by the 1st, 2nd and 3rd

modes, respectively. Using the geometry of the 1981 tomographic

array and the same 58 ray paths used in the estimations, we computed
the corresponding st's. The rms values of the simulated sc and

computed st's for each ocean are summarized in Table 3.1. It is

.le' [
- N N

seen that even with unrealistically large higher-mode perturbations,

the second mode is already transparent to the travel-time

measurements at an experimental noise level of 5 ms.
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A summary of a simulated study of whether higher modes

are transparent to travel-time measurements.

mode

simulated

rms é&c

(n's)

rms st

(ms)

lst
2nd
3rd

28
4.2
1.8
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We now summarize the data set used in the parameter estimates in
Table 3.2. The seven time series records of &c were distributed
only at 3 mooring sites E1, EZ2 and S3, and are thus expected to
mainly contain information on the time behaviour of the perturbed
field. In contrast, since the duration of each CTD survey is
relatively short (2.5 weeks) as compared to the wave period (of
order 100 days), they should mainly contain spatial information.
About three ray paths per source-receiver pair (which cycle almost
the entire depth of the main thermocline zone) were used. The
corresponding time series records of travel time therefore contain
information on both the time and space behaviour of the perturbed
field. Only the data obtained within the period between yeardays 61
ana 139 are used since most of the acoustic instruments had failed
after yearday 139 and the experiment started roughly on yearday 61,
Thus, the data set contains information on the mesoscale
perturbations that is continuous in both time and space in the 300
km square over a period of 80 days. The postion 26°N, 70°W and the
time yearday b6 are defined hereafter as the point (x,y,t)=(150

km,150 km, 0 s) in the tomographic experimental coordinate system.
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N Table (3.2)

Data used in the parameter estimations

data type notation quantity duration no. of data source ;
(yeardays) :

modal amplitudes aj 65  66-83 65  1st CTD survey ”

modal amplitudes ag 65 120-137 65 2nd CTD survey

sC time series ccgk 7 61-139 7x27 temperature sensors

st time series ctgk 58 61-133 58x9 tomographic array L;

Note that j is the index for position and k is the index for time.
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o 3.4 The Wave-Induced Sound-Speed Perturbations

Propagating planetary waves can be affected by a number of

i factors, such as the presence or absence of a mean flow, a bottom
slope or resonant interactions. Depending on which of those effects
are important, the corresponding perturbed field can display very
different space-time characteristics. Due to the uncertainty on
which of those effects dominate in the real situation, different but
f“' plausible dynamical models that place emphasis on different factors
and are parameterized by different sets of wave parameters must be
tried in the detection process. Thus the detection of planetary
wave involves both parameter estimation and model identification.

For the detection of baroclinic waves in the tomographic region,
we have estimated the wave and mean-flow induced sound-speed

;" perturbations sc_(x,t;p) both from our three plausible

0
s
J

wave-propagation models (l1abeled 0, 1 and 2) and the data set. The
i;il results of the wave-parameter estimation and the goodness of each
model are presented and discussed in Ch, 5. In this section, we
describe the three models, their associated ccm's and the
corresponding sets of wave parameters p.

The ocean bottom in the area of the experiment is quite flat so
tnat minimal topographic effects on the wave dynamics should be
:;% expected. Thus, in all three models, the modification of the
g-effect resul ting from depth variations is excluded. The forced

L waves resulting from noniinear interaction of the dispervsive waves

...........................
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.................................
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are also excluded in all the models. The forced perturbations are
of higner order so that they should be negligible. However, at
resonance, the forced perturbations can grow in time and hence can
become significant, thus the possibility of resonant propagation is
included in Model 2. Only the lst baroclinic waves are modeled
because Tittle energy in the higher modes are found in the CTD
casts. Furthermore,.the waves are assumed to be narrow band so that
locally we can use a discrete-wave representation,

Model O represents free propagation of linear Rossby waves over
a flat bottom in the absence of a mean flow. The isopycnal surfaces
are displaced by the baroclinic waves so that the corresponding

sound-speed perturbations are given by

Gcm(i’t;E=Ew) = Gcw(i’t;Ew) (3.12)
with 3
]
d 1
&c,, = g (2) Z A;cos (K xH] sy-o, thy, ), (3.13) ;._3
i=1

ro.

wnere W is the number of first baroclinic waves considered and Ai’

' |E‘ R

(ki’]i)’ o and vj are the amplitude, wavenumber vector,

frequency and phase of the ith wave, respectively. The wave ;i

ampli tude A,i represents the maximum sc (which occurs at 2=-700m)
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induced by the ith wave since gl(z) has been re-normalized to have

"
}:{ a maximum of unity that occurs at 700 m depth. The space-time

behavior of sc, is characterized by the wave parameters p=p  and
ﬁff constrained by the modal dispersion relationship of the waves as
. given in (2.49) without 8 modifications and Doppler shifts,

i.e.,sen=can=0. Because 95 is constrained by (ki,li) in

(2.49), 9 is not a free parameter, so that 6C,, is completely

determinable and can be parameterized by ]

EN = (Al’kl’]l’Tl’“"AN’kN’]N’YN)' (3-14)

e The possibility of the existence of a mean flow is added in
Model 1. The structure of the mean current is assumed to consist of
the barotropic and the first baroclinic modes only. This assumption
is probably a good one because the two modes are known to contain
the greatest fraction of the kinetic energy in this general area
(McWilliams and Flierl, 1975, and Sanford, 1975). In this model the
isopycnal surfaces are further tilted by the baroclinic mean current
(the thermal wind relation). Therefore, the corresponding

sound-speed perturbations are now represented by

8Cu=8C, (X, Eip, 5 Ug Vg sUy sV )¥6C (Xiup,vy,by)

(3.15)
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with an additional time-independent mean variation

y v, X
sc. = g;(z) L b0 - u1( )+ 1(
F b F D

)1, (3.16)
where F is a known constant, b0 is a constant for the shifting of
the zero-reference of sc. from the origin (x,y)=(0,0) to the
correct position, and (uo,vo) and (ul,vl) are the modal

ampl itudes of the barotropic and baroclinic mean currents,
respectively. (Note that the overbars on the mean moda! amplitudes
have peen dropped and F is an adjusting factor resulting from the
different normalizations of f,'s and g;'ss F=0.157 in the
tomographic region.) Due to the Doppler effects, the dispersion
relationship of the waves changes from that of Model 0; therefore,
so does the space-time behavior of L The Doppler shifts so,

in (2.49) now exist and are constrained by the (ki,l }'s,

i
(uo,vo)'s and (ul,vl)'s as given in (2.48C). Thus, sc, is
now parameterized by EF(Rw’uo’Vo’ul’Vl’bo)°

In Model 2, the possibility of the propagation of resonant
secondary waves is further included. The modeling requires the

replacement of A by Ai*Gyt in (3.13) where G; represents

the growth rate of the ith wave. In general, G;

j is constrained by

the wavenumber vectors and wave amplitudes of the interacting
primary waves, However, since the barotropic mode is not observable

in our data set while resonant waves can be generated by intermodal
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wave-wave interactions, Gi can only be left as a free parameter in
the model. The set of parameters are now given by
E;(EN,GI,...,Gw,uo,vo,ul,vl,bo).

The dynamical assumptions made in each model are summarized in
Table 3.3, In addition to the correct propagation model and its
parameter values, the number of existing waves W is also an
unkncﬁn. Therefore, its integer value must also be estimated in the
process of detection., The estimation of W is achieved through
assumption and parameter estimation, followed by model
jaentification, with each presumed value of W being considered as

giving a different sub-model.
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Table 3.3

The Dynamical Hypothesis Made In Each Wave-Propagation Model

Uﬁ= Model no. weak mean flow wave-wave resonant flat
:fl oth mode ist mode interactions propagations bottom
RS

NI
ud

L5 -
1‘. 3

A 4

“X" denotes the assumption is made,

L ox

-.
1

e

F

[ I

LI A

1 's

.. .
SN
St

WAt ta?

-
’
v
.t

S

)

. . - . R . - O - . - - -
'-“< - . : e R LA - . ~0T
.« CC Y . . - - Lt et e T e T e Ca - . . .. . ..
RIS St SR TS SO N NN WOUN PN ST W S, S | PP X UV AL WP S W AR WVIC T S ST W . WU N - 10 e W MR PO WY SENE DAY WP ERY

7




Bt Aa gk diet i 8 - ‘i) ke Py i on A ML S A Al Mol & e . e

.....

104
3.5 The Model Equations

Detection is the extraction of the desired signal from a
background of noise (or other signals) by utilizing estimation
methods. In our case the desired signals are the sound-speed
perturbations sc induced by the waves and the mean-flow.

Obviously, not all the perturbations of sound speed are caused
by the baroclinic waves and mean currents. There are many other
oceanic events such as tides, internal waves, turbulence, etc. that
also perturb the sound speed. These other sound-speed fluctuations,
therefore, constitute the background noise of our detection problem,
and just 1ike the measurement noise, they too contaminate the data
set, But if the signal generated by the planetary waves and mean
flow is dominant in the data, the signal can be detected.

The contamination in the data set caused by the background
sound-speed fluctuations is referred to as the model noise. The
mode] and measurement noise combine to give the experimental noise
that accounts for all the noise in the model equations for the
modal-amplitude data and the sc time records. For the qth
modal-amplitude datum agidlq observed at
(xg,n=uqdq¢q)mm~mekm datum

ec?k=¢c?(t=tk) which is the 1th sc time record observed

at (x,y,2,t)=(x7,071,27,t ), the corresponding model

equations can be expressed simply as

o
P
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O _aMp) + 2 3.17
aq = 4,(p) Ya (3.17)
and
0 m c
where
m
aq = scm(xq,yq,z=-700 m,tq) (3.19)
and
m
a

are the signals, and v and V%k are the noise in a

0
q q
and cc?k, respectively.

The formulation of the model equations for the st time series
requires some special care, Tne content of the st data is more
complicated than that of the other data. In addition to the
barocl inic waves and mean current, and the background oceanic
fluctuations and the measurement errors, the relative motions and
the uncertainty in the nominal positions of the acoustic moorings

also contribute to the observed travel-time perturbations. In fact,

the latter two contributions were dominant. If one were to model

these mooring-position related travel-time perturbations as part of

the experimental noise, the st time records would suffer a :j!
vanishingly small ratio of signal to noise. In order to improve the ]
3
4
]
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quality of the st data, as suggested by Cornuelle (1983), the
mooring-position related travel-time perturbations must also be

modeled as signals, implying that the uncertainty in the mooring

positions must also be parameterized in the acoustic model equations.

A set of relative mooring-displacement data was available from
the acoustic navigation systems. The tracking data had already been
used to eliminate some of the signal produced by the mooring motions
in the travel-time data. But, since the set of tracking data is
neither error-free nor compiete (a lot of data were missing), the
untracked or unknown horizontal displacements together with the
uncertainty in the horizontal nominal positions of the moorings must
still pe parameterized. Note that the vertical translations of the
acoustic sources and receivers were small (of order 50 m) and
produced very little travel-time perturbations (of order 1 ms),
therefore, they need not be parameterized.

Let us consider the jth ray path connecting the mth source Sm to
the nth receiver Rn. According to Cornuelle (1983), the additional
time required for the acoustic wave front to travel from Sm to Rn
along the path due to a small elongation sR (let's say of order 1
km) of the norizontal distance separating Sm and Rn can be

expressed, to lowest order, as
R
dtJ = r.éR, (3.21)

wnere rj is the corresponding ray parameter, i.e., the cosine of
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the launching (receiving) angle divided by the sound speed at the
source (receiver); rj is a conserved quantity along the ray. Let
tne unknown horizontal-displacement vectors at time t, and the
time-independent errors on the assumed nominal horizontal-postion
vectors of Sm and Rn be [sxSm(tk),cySm(tk)] and
Lsan(tk),qun(tk)], and (AxSm,AySm) and

(Aan,Aan), respectively. It then follows that the

corresponding st? at time t is given by
R
stj(tk)=rjcosbmn[Aan-AxSm+chn(tk)-chm(tk)]
+rjsinbmn[Aan-AySm+can(tk)-can(tk)]
(3.22)

where bmn is the direction of the horizontal line of transmission
from Sm to Rn, measured in degrees (positive anticlockwise) with
respect to the x-axis, i.e., east-axis.

We are now in a position to write down the acoustic model
equations. For the travel-time perturbation ct§k=at°(t=tk)
observed from the jth ray path at time t,, the corresponding

equation can be cast symbolically as

0 m t
thk = ctjk(E,AxSm,AySm,Aan,Aan,chm,aySm,chn,san) + ij
(3.23)

where V}k represents the total or the experimental noise in ctgk.

107
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The signal 5t'3'k can be «~itten as the sum of two parts such that

m _ .p R
atjk = ctjk + 5tjk (3.24)

R _.4+R : ; P
where ctjk_atj(tk) is expressed in (3.22) and ctjk is the

signal induced by the waves and mean flow which can be expressed as, using

(3.8),

-s¢_(x,t, :p)
sthy m=kT T s, (3.25)
) , 'c'(z)z

j(S)

witn L8 denoting the unperturbed trajectory of the jth ray path,
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CHAPTER 4
PARAMETER ESTIMATION AND THE GENERAL NONLINEAR PROBLEM

For a typical scientific investigation, parameter estimation (or
inversion) and model discrimination are the two crucial steps in the
process of extracting information from data obtained in
experiments. Of course, a successful investigation also dependé
critically on the understanding of the physical situation and the
planning of the experiments. While the physical knowledge enables
us to develop plausible mathematical models, relating the physical
parameters that characterize the physical situation to the
pre-selected types of observations (the forward problem), well
designed experiments provide good data which are informative to the
investigation. Readers interested in the design of experiments are
refered to the works of Box et al, (1959, 1963 and 1967).

Estimation theory plays a vital role in making progress in
physical oceanography. The ocean is a very complicated
environment, The forcing, initial conditions, and boundary
conditions are uncertain. The exact description of the fluid motion
by mathematical equations is often very difficult, and even when
where it is possible, the exact solution is often intractable.
Thus, in the theoretical study of an oceanic phenomenon, we must
resort to assumptions and approximations (idealizations) that are
reasonable for the particular study. Different assumptions and

approximations result in different models, and only after

 olnh et et el fan o
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Ay experiments are conducted and estimations performed, can we then
1“;
‘ ¥ . r - 3 .
{3} compare models for the confirmation, rejection or revision of
-
3
;:t hypotheses, Therefore, estimation, which utilizes data observed in
AN experiments, provides a feed back loop in the process of
e .
Sl understanding the ocean.

This chapter considers the general estimation problem. The
technique and results of estimation specific to the observations of
planetary waves in this study are presented in chapter 5. The
corresponding forward problem has been studied in chapters 2 and 3.
In the first part of this chapter, estimation methods developed from
pure stochastic approaches as well as those with few probabilistic
considerations are reviewed and discussed. Our goal is to relate
and unify these methods by showing that once the same set of
information and assumptions concerning the solution and experimental 3
noise is consistently and analogously adopted by each individual
method, these methods give the same solution. In showing this, a
generalized estimation procedure that computes this "optimal"
solution common to all the methods considered is also established.
The implication is that we can stop worrying about these different
methods and just apply the generalized procedure to data, since the ;
solution is independent of the methods themselves. The generalized

procedure is the minimization of the now familiar function of a

fﬁﬁ; weighted sum of products of residuals from both the experimental and

"a priori" data. The second part of this chapter reviews and .

discusses some widely used minimization methods for computing the
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solution. The last part considers the errors in the solutions and
presents some overall measures of goodness of a model based on its

final residuals. Such measures of goodness are needed in comparing

models,
L AR PR .
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4.1 The General Estimation Problem

The models for many physical situations can be expressed

symbolically as

y = fix,p), (4.1)

where y is an observable vector representing the signal produced by
a physical event, x is a controllable vector of design-parameters
defining the experimental conditions for observing y, p is a vector
of physical parameters, where the value of p is not of our choosing
but rather characterizes the physical event, and f is a vector of
functions (model equations) which express one's theory on the
relation among quantities; f is a vector of functionals when p
represents continuous functions in their parametric forms. Let us
define the dimensions of y, f, x and p to be mxl, mxl, rx1 and nxi,
respectively. Note that all the vectors are column vectors,

The study of a forward problem, typically, consists of
identifying a relevant set of physical parameters and deriving an
appropiate set of model equations. The idea is to be able to model
the signal for a given situation described by x and p, by
incorporating all the essential features of the true process into f,

The corresponding inverse problem is the estimation of p, based
on data obtained in an experiment of controlled x. The model

equations f are considered to be known from the study of the forward

......
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problem. In the presence of additive random noise in the
observations, which is always the case in practice, the experiment

can be modeled stochastically as

y* = f(x,p) *+ v. (4.2)

The data or observations, denoted as y*, contain the signal, but
unfortunately, are contaminated by noise v, and y* and v are both
(m-dimensional) vector random variables. The experimental noise v
includes both the measurement noise and model error. Because the
data is imperfect, only approximate solutions or estimates are
obtainable. An estimation or inversion procedure acting on the data
to give an estimate is called an estimator. In general, different
estimates may or may not be computed from different estimators,
given the same data set. However, the "optimal" or the “"best"
estimate p*, that is the unique solution for p, is evaluated from
the optimal estimator which is established according to one's
criteria for the optimal estimate. Consequently, the quality of p*,

besides depending on the quality of the observations and the model,

depends on the estimator that is employed.
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¥5i‘ 4.2 Establishing Stochastic Estimators
- Due to the randomness in y*, although p itself may or may not
;?{ be a vector random variable (a random p corresponds to a random
S% process), the estimates are always random in nature: For a given
- estimator, different realizations of y*, or equivalently, of v,
would result in different estimates. In fact, the statistical
x properties of the estimates depend on the estimator used and the
;f statistical properties of v.
f% Before establishing the estimator for computing the optimal
estimate p*, one must do the following: (1) Select a desired set of }
statistical criteria for the optimal estimate, (2) collect all the '
b available statistical information concerning the noise v, and (3)
EE?% collect all the prior information concerning the physical parameters E
o p.
o
i:?f 4.2.1 Criteria For The Optimal Estimate
S A reasonable estimator should produce estimates which, on the :
?;i average, are close to the true value of p. There are two types of 1
iiﬁ error associated with p*: the bias and the random errors, and small

bias and small variance are generally highly desirable. (Bias is
the difference between the expected value of the estimate and the
true solution,)

In most cases, unbiased estimators are hard to obtain, and even

...............................................
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if obtainable, the corresponding estimates are usually unstable to
noise, meaning that small errors in the data can be translated into
large errors in the estimate. In fact, a small bias must often be
introduced, intentionally, for uniqueness and for reducing the
variance of the solution of an ill-conditioned system (Rust and
Burrus, 1972) (here "system" means system of equations as expressed
in equation (4.2)). Thus, total lack of bias is neither essential
nor often desirable, because unbijased estimates are not error-free
ana are sometimes unstable.

The theoretically attainable lower bound of variance is given by
the Rao-Cramer theorem (see Bard, 1974, for the derivation).
However, practically, the estimator associated with this minimum
variance bound (MVB) can only be established for a few simple
systems such as linear systems. The MVB estimators in the case of
linear systems can be derived easily by the Gauss-Markov theorem
(Liebelt, 1967). In many engineering applications of estimation
theory, the development of a new estimation method is usually not
necessary or important, because many of the existing and commonly
used estimators can generally provide reasonably accurate estimates,
and in addition, the minimum-variance, unbiased (i.e. the most
ideal) estimator is unattainable in most cases, anyway. In choosing
a common method, we have simply accepted the criteria for the

optimal estimate associated with the method.
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- 4,2.2 Noise Distribution

Complete statistical knowledge of the vector random variable v,

that is its joint probability distribution function (pdf) is seldom

possessed, and usually only a little information concerning v is
available, for example, its mean (vector) and covariance (matrix).
However, we must somehow assign to v an adequate pdf because most
estimation methods demand it. If only the mean and variance are
known, a rational choice is the (multivariate) Gaussian (or normal)
distribution, for reasons stated in the following paragraphs:

(1) Simplicity: a Gaussian distribution is parameterized by its
mean and variance only, and the assumption of a normal pdf for v
generally leads to the establishment of simpie estimation procedures.

(2) Under some mild conditions, if v is generated from a
summation or integration of many random variables, whether normal or
not, v tends to the normal, according to the Central Limit theorem
(a proof of the theorem can be found in Drake, 1967).

(4) We do not want the estimator to be falsely informed by
specifying more statistical information than we actually know, In
information theory, Shannon (1948) has derived a suitable measure of

the information contained in a pdf; this measure is called the

entropy and it is inversely proportional to the amount of
information, Without further information beyond the mean and

variance, the Gaussian distribution maximizes the entropy (the proof

..........




can be found in Bard, 1974), implying that the amount of extraneous
information is minimized.

Henceforth, v is assumed to be normally distributed with zero
mean and a known nonsingular symmetric covariance matrix C.. In

many cases, the true Ev may not be exactly known, but this poses
no serious problem in the estimate. In general, a reasonalbe
approximation of C  can suffice, because most estimators are not

sensitive to small variation in gv. In addition, the parameters
can always be reestimated using a-refined C, when the noise
estimate (i.e. the final residuals) generat;d by the estimator
signifies that the original specification is far from being
correct. Model errors, very often, have nonzero means, and the
assumption that the means are zero will result in the generation of
bias error in the estimate. However, when the model is accurate,

the bias will be small, The generation of bias will be further

discussed in Ch, 6, Sec, 6.4,
4.2.3 Prior Information

Prior information, if available, can often increase the accuracy
of the estimate. In fact, for ill-conditioned systems, the use of
prior information, which is equivalent to the introduction of bias
in the case of linear systems, must be insisted upon (Jackon, 1979,

Rust ana Burrus, 1972; also see the discussion in Ch. 6, Sec. 6.4
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for reasons of stability and uniqueness. The information can come
from previous experiments or physical intuition, and it can
generally be summarized in two forms: a priori probability
distributions, and deterministic equality and inequality contraints
for p.

A scientist usually has some idea of the true value of p before
carrying out an experiment. For instance, he may know that the true
p must lie in a region around, say, P=pg - The above information
can often be expressed by inequality contraints. On the other hand,

if one is willing, the same information can be summarized in an a

priori pdf P(p): The specification of the a priori expectation by

Pp and the a priori covariance matrix C  according to the

P
boundary of the region leads naturally to the assignment of an a

priori Gaussian distribution for p, with respect to information

theory. In what follows, we consider only estimation with a priori

probability distribution,
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4.3 Statistical Estimation Methods

Maximum 1ikilenood (ML) and the mode of the posterior
distribution (MPD) (when statistical prior information is available)
are representative, common estimation methods. One important reason
for their typicality is that many other common methods give the same
estimate when all the random variables under consideration are
normal. Other reasons are their wide range of utility, simplicity
in applications and that the estimates are generally easy to compute.

The ML estimate (MLE) is the value of p thai maximizes the
Tikelihood function obtained by substituting the realization of y*
into P(Zflg), i.e., the pdf of y*, given p. The reasoning is that
the MLE is associated with the physical event which is most 1ikely
to produce the data that we have observed. 0On the other hand, the
MPD estimate (MPDE), as indicated by its name, is just the value of
p at which the maximum of the a posteriori distribution
P(Ejy*) occurs; P(Rllf) is the pdf which we must assign to p after
the experiment was conducted, that is the pdf of p, given y*,
Clearly, the MPD method is simply an extension of the idea of
maximum 1ikel ihood to accommodate the use of prior information.
Botn the MLE and MPDE are asymptotically unbiased (or consistent)
and asymptotically efficient (Fisher, 1950), that is the estimates
become unbiased and reach the MVB when the number of observations

increases to infinity, therefore, we would expect the estimates to

.........
...............................
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have small piases and small variances when the set of data is much

larger than the set of parameters. Futhermore, the estimates do not
depend too strongly on the actual shapes of the distribution
functions P(y*p) or P(ply*), and the tails of the distributions
have no effect at all on the estimates.

The MPD method belongs to the class of estimation methods which
uses Bayes' theorem., Let us rnow formulate the MPD estimator. From

Bayes' theorem, we have that

P(py*) = Ply*|p)P(R)/P(y*), (4.3)
But since
P(y*) = fP(l*[p_)dB (4.4)

is not a function of p, and together with the assumption of normal

distributions such that

. T. -1
Pyp) = (20 ™2 qer V2(g ) o M2LL-Ep M, TLyr-Elxp) ]
) (4.5)

and

T -1
P(p) = (zn)'”/zdet‘l/z(gg) e~ 1/ 2(p-pg) €57 (p-py), (4.6)




it follows that the maximum of P(p|y*) is identical to the minimum

of the function:

s(p) = s4(p) + sp{p), (4.7a)
where
s4(p) = 1/2Lx*-f(§,2)]Tgil[,x*-f(i,g)] (4.7b)
and
Te-1
sp(g) = 1/2(p-p,) EE (p-py)- (4.7¢)

The function s(p) is called an objective function, which is a
measure of the "lack of fit" between the data and model for a given
value of p (Bard, 1974). We can interpret sq and Sp as the
constraints on p provided by the data and prior information,
respectively. Thus, the MPD estimator is the minimization of the
objective function of equation (4.7), and the location of the
(Teast) minimum is the MPDE. It is a general fact that almost any
estimation method can be reduced to the minimization of an objective
function, as will be shown below.

A few comments on the minimum point p* of equation (4.7), that
is the MPDE, are listed below:

(1) If prior information is not available so that £é1=0, p*

is identical to the MLE. This can be shown by observing that the
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igf minimum of S is the maximum of the 1ikelihood function of

equation (4.5).

v (2) Even when C;1£0, p* may be interpreted as the MLE: As
u;f pointed out by Jackson (1979), the a priori information may be
if; incorporated in the system of equations by treating p, as the (a

priori) data for p with covariance matrix C In this way, there

P
are n more equations in the system and p* is where the maximum of
the modified 1ikelihood function occurs, assuming v and p are not

correlated.

(3) If the model equations f are linear in p (1inear system),

A
e

[ 2pv Suy A N

and v and p are uncorrelated, p* is identical to the linear minimum

'
:r{fx

“-<
¥

variance (Gauss-Markov) estimate (Liebelt, 1967).

,.\
.

(4) If the data are not enough to constrain p by themselves,

L3

A
AR
s I I
P h R AR R

that is the system is underdetermined and/or ill-conditioned such

¢

that more than one least minimum exists when minimizing Sq alone,
.f;f then additional constraints provided by the prior information

denoted by the term s_ must be added to impose uniqueness. This

"Qf- is always the case when inverting functions, for p is effectively

infinite dimensional. On the other hand, if the system is
well-conditioned, which may be the case when the data outnumber the

physical parameters, then the addition of s_ in the objective

P
NN function will have 1ittle effect on p*.

.o .




4,3.1 Incorporation Of Different Data Types

We define an independent data set as a subset of the entire set
of data, produced by the same physical event, but measured with a
different technique, so that the randomness of any one subset is
statistically independent of the other subsets.

Suppose y* is a joint vector of k independent data subsets y.*

acquired in the experiment
11.* = ii(éi’B) + Yy i=1,2,...,k, (4.8)

where fi’ X and v; are respectively the vectors of model
equations, design parameters and random noise, corresponding to the
observation of y *. Since v; and v, are uncorrelated, the data
constraint Sq of the objective function of equation (4.7) for the

optimal estimate decomposes into a sum of sub-constraints such that

k
sy = 1/2 Z [yA-£4 (x4, 2 1T 84 ()], (4.9)

i
where C, is the covariance matrix of v,. C; has two important
functions: (1) to nondimensionalize the ith set of data and
equations so that data sets with different physical units can be
incorporated together, and (2) to control the relative effect of the
ith data set on the estimate upon its reliability.
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4.3.2 Treatment of Erroneous Design Parameters

Optimal values of the design parameters X=X are presel ected
so as to optimize the effectiveness of an experiment that will be
performed. However, the introduction of error in the preselected
value of x can seldomly be avoided during the deployment. For
instance, a physical oceanographer may want to deploy a mooring at a
preselected location, but the imperfection in navigation renders the
preselected position subject to error. If the signal in data
produced by the error in X is smaller than the noise Tevel, the
error may be of no consequence; otherwise, minimizing the objective
function of equation (4.7) will produce an erroneous result which
can no longer be an optimal estimate of p,

This problem can be dealt with by treating the preselected value :
X9 of x as the observation of the true value of x, and modifying

the system of equations (4.2) to

y*io=tfx,p) it

<

|€

X0 X
(4.10)

where w is the error in Xg- In this system, the true value of x
is also treated as a vector variable to be estimated, and there are
additional r unknown parameters and r data points. Suppose we have

an idea of what the bounds on w are, so that we can characterize w
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e by a normal distribution with a covariance matrix C_. This leads

e to the minimization of the following modified objective function:

s(x,p) = ;[l*{(g,g)]Tgil[g_/*-f(ﬁ.g)]+;(50-5)T5;1(50-5)

1 -1
+ “(pn-p) C (pa-p)
ZE"E % ‘Bo’E (4.11)

e We refer Xy and EO as the erroneous design data and the a priori

o data, respectively. They result in two constraining functions which

are similar in form to those given by the experimental data y*.
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4.4 Non-probabilistic Estimation Methods

There are estimation methods developed originally with little or
no consideration of statistics. These methods do not consider
optimal statistical criteria for the estimate, but instead, the
optimal criteria are selected in a more deterministic manner upon

physical intuition or sometimes in an ad hoc manner, However, these

b - 3
i{; methods have their analogues in the pure stochastic framework once ;
;;Fi adequate probability distributions are attached. For examples, the ‘
:ﬁf primi tive method of "weighted least squares" for estimating a
}E handful of numbers is related to the M. method, and the recent
:;1 "variational method" of Provost (1983) and the classical "inverse
S metnoas" of Backus and Gilbert (1967, 1968 and 1970), Wiggins ‘
;§?{ (1972), Jackson (1972), Parker (1977) and Wunsch (1978) for |
ljil estimating continuous functions are related to the MPD method.
T ;
% 4.4.1 The Variational Method
if;f Provost's variational method translates the problem of
;;'? estimating continuous functions to a problem in the calculus of
;:: variations. In the simplest d;scription, the estimation problem
i’f- becomes the determination of p that minimizes a nonnegative
; : "smoothing” functional of the unknown function represented
3:5: parametrically by p, and subject to the data constraint
1 :_
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Ly*-f(p) 1 Wly*-£(p)] = q. (4.12)

In the above, q is an expected (or presumed) positive value of a

measure of the total misfit between data and model prediction, and W
is a positive-definite, diagonal weighting matrix for
nondimensionalizing and scaling data and equations having different
physical units and different order of magnitudes. Scaling factors
dassociated with the degree of reliability on each datum can also be
included in W. Let's assume that the unknown function is a time
signal in this discussion. The smoothing functional can be the
integral of the square curvatures or square slopes, or some other
desired nonnegative measures of smoothness of the time signal, and

it can pe expressed parametrically as ET§ p with the matrix S

s L '-"‘\’.:'.“"

voeing positive definite. The corresponding objective function(al)

7

to be minimized is 1(p,a) with

:

1(p,a)*aq = a[l*-f(ﬁ,g)]T! Cy*-f(x,p)] + ET§ Ps (4.13) 3
where a is the Lagrange multiplier to be found,

In the variational method, a criterion for the optimal estimate "

is the satisfaction of the data constraint, but since there will be ;l

so many solutions satisfying this constraint due to the ii

underdetermined nature of this system, another criterion must be

brought in to ensure uniqueness, and it is smoothness, Clearly, the

......................




method chooses among all the solutions of equation (4.12) the
smoothest one to be the optimal estimate, with smoothness defined by
;f the selected smoothing functional.
With Py=0. the similarity between equations (4.13) and (4.7)
?z is evident, and in fact, they have the same minimum-point (i.e., the
‘ two methods have identical solution) when S and W are set
proportional to the inverse covariance matrices Eél and

E;l of p and v, respectively, Under such choice of S and W, if

p represents the Fourier amplitudes of the time signal to be

e

- estimated, then the diagonal elements of §fl and !(1 represent
the normalized power spectral density functions of the signal and
noise, respectively. Furthermore, a is analogous to the signal to
noise ratio and the deterministic criterion of smoothness is
analogous to the a priori information of a low-pass signal described
statistically by the spectrum denoted by §f1.

In practice, one does not compute « and p simultaneously through
N minimization, but instead, they are often determined by an iterative
i technique: A guess value for a is used so that p are the only
{}j variables during minimization, and after the corresponding solution

for p is evaluated, one then computes the corresponding q from

equation (4.12), and if the computed q is acceptablely close to the

expected value, the optimal estimate is successfully found,
otherwise, the procedure is repeated as many times as needed with
different but progressively better guess values for a. A similar

jterative estimation procedure is also commonly exercised in
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stochastic methods because C, and EB are generally estimates
themselves, therefore, their values must be adjusted and the
minimization procedure must be repeated if the final residuals do

not agree with the presumed covariances,
4.4,2 The Inverse Methods

Backus and Gilbert originally developed a general formalism for
solving the linear inverse problem, which was later cast into simple
linear algebra by Wiggins, Jackson, Parker and Wunsch in
applications to geophysical and oceanographic problems. Such
formalism is, by now, known simply as "linear inverse methods". The

general linear inverse problem can be cast into the parametric form

l* = E E + ! (4014)
by replacing f(p) with F p in equation (4.2), where F is a mxn
matrix representation of the linear differential operator associated
with the forward model and p is a parametric representation of the
continuous function to be estimated. Again, since p is effectively

infinite dimensional while the number of observations is 1imited,

the system is underdetermined, i.e., n>>m. The system is generally
i1l-conditioned as well, so that there are infinite number of

unstable solutions (i.e. solutions with large error variance) that

"Lt [L59 A0 .
) TR YO

satisfy equation (4.14) identically with v set to zero. One thus
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faces the problem of nonuniqueness compounded with instability.

;{ Before going any further, let us first transform equation (4.14)

y' = F'pt o+ v, (4.15) ‘

where y'=N1/2 /2

g p'est/?
1/2

!’ af'Id EI=!1/2£ §-1/2.

B» ¥'=H

The scaling by W is necessary because some obsevations may be

b less reliable. The scaling by §1/2 is also necessary, because
without this scaling, the large weighting coefficients in F would
tend to put large amplitudes to the associated parameters in an
- underdetermined system. Both S and W are symmetric positive
definite matrices. Formally, the solution p' of (4.15) can be
expressed as a weighted sum of normalized orthogonal vectors yj

belonging to a complete set such that

n
oo E' = Z aJ. _\_)_J-. (4.16)
\ =1

<.

The aj's are the unknown coefficients which we hope to determine
from the data and from some criteria in the inverse problem.

Choosing the right set of Xj’s is crucial to the success of the

inversion.

> s
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To deal with nonuniqueness and instability, linear inverse
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methods proceed with a spectral decomposition of F', that is the
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singular value decomposition (SVD) of F' (Lanczos, 1961). The SVD

gives
Fl=UAY, (4.17)

where A is an mxm diagonal matrix with nonnegative elements, and U
anc V are mxm and nxm matrices, respectively. The jth diagonal

element (at the jth row and jth column) of A is the jth singular

2
j of

either one the following eigenvalue-eigenvector problems:

value Aj or the square root of the jth eigenvalue i

e T 2 ..
E-F- Ej = AJEj’ J-l,z,...,m, (4.18a)
or
TEyy =y - 4.18b
£ E Y5 = *jlj’ Jj=1,2,...,n, (4. )

with SRS by convention. The solution for the eigenvectors

Yj of equation (4.18b) is the choice of the set of basis vectors
for p' in equation (4.16). The jth colums of U and V are the
eigenvectors Ej and vj, respectively. Notice that xj=0 for

j>m, and the corresponding null-space eigenvectors les with jom,
even though are constructible, they are not included in V in the
decomposition of F'. It is because they are not resolvable or
constrained by the data: Any combination of the null-space

eigenvectors is a solution to the homogeneous equation F'p'=0, and

they are the reason for nonuniqueness. At this stage, a good
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strategy is to ignore the null-space completely and accept the
unique particular solution Ep' as the appro.imate solution for
p'. By suostituting (4.16) and (4.17) into (4.15) with v' set to

zero, and using the equalities (U A !T)3j=xjuj and

T)T!.=Ajvj and the orthonormality of the

eigenvectors, we obtain aj=A31(gg¥'), and hence,

(UAy

1 -1, T, n

J=1

When there are less than m independent equations in the system, the
number of nonzero singular values (the rank of the system) is
actually less than m, and this corresponds to a larger null-space.
Unfortunately, Ep' is not a stable solution., As can be seen
in equation (4.19), the effect of the noise in y' is magnified by
the vanishingly small singular values, These appear because of the
ill-conditioning of the system, i.e. noise in the model F' and
almost redundant information in the data. The usefullness of the

SVD is now obvious: it provides a meaningful set of basis vectors

for p', in which the stable and unstable components (vectors) are ]
well distinguished by the sizes of their singular values. Thus, a ‘ﬂ

stable approximate solution p'* can be obtained by discarding or

down-weighting the unstable components. A down-weighting technique 3

is to modify equation (4.19) to
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where a is analogous to the Lagrange multiplier of the varijational

method, representing the signal to noise ratio, and its value is
‘.fz progressively adjusted until the residuals are acceptable and the
solution is stable. This is identical to filtering the particular
solution by a low-pass filter because the unstable components are
usually more oscillatory; indeed, a smoothed version of the
particu’ar solution is obtained. This smoothed solution is stable
to noise and it is a good approximation when the true solution is
also smooth.

172

Replacing p'* with S/ “p* in equation (4.20), where p* is the

estimate to the original parameters p, and recasting the equation

back into matrix form, one obtains
) p* = (TN F+5) H(FTu)y» (4.21)
with a set tc unity. Note that one can always make a=1 by rescaling
fﬁﬁ W and S. The stochastic analogue of the inverse methods is
Sy disclosed by realizing that the linear inverse solution shown in
i{ﬁ equation (4.21) is actually identical to the MPDE evaluated by
N minimizing s(p) of equation (4.7) with py=0 and f(p)=F p,

providing that the inverse covariance matrix of noise and the
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inverse a priori covariance matrix of p are exactly equal to W and
S, respectively. Since the MPDE has the statistical property of
efficiency (minimum variance) in the case of linear systems, the
linear inverse solution becomes the linear minimum variance estimate

when W, S and a are identical to E;l

,g; and unity,
respectively (Cornuelle, 1983).

It was mentioned earlier that a priori information in the form
of a pdf is required to provide uniqueness and/or stability in the
stochastic methods when the system is underdetermined and/ or
ill-conditioned. There are no exceptions in either the variational
or inverse methods except that the prior information comes in an
equivalent but non-probabilistic form, which is the statement that
the continuous function to be estimated is smooth.

We have shown the equivalence of the MPD, variational and
inverse methods. Therefore, someone interested only in the final
solution and computional efficiency would no doubt formulate the
estimation procedure within the context of optimizing objective
functions. However, many geophysicists prefer the less efficient
but more powerful spectral decomposition technique. Unlike the
objective function approaches, in which the information of
smoothness is incorporated right at the beginning of and during the
optimization process, the spectral decomposition approach does not

use this information until the whole spectrum of solutions is

N (S T




135 -
obtained. From there, the resolution of each parameter and the '.;_
distribution of independent information are simultaneously provided ]
: by the spectral decomposition: the jth column of the

solution-resolution matrix V !T indicates how well a delta

function located at the jth colum of p can be resolved, and the jth

column of the data-resolution matrix U gT describes the
distribution of the jth independent piece of information in the
) data. The drawback with spectral expansion techniques is that they
are not applicable to systems that are not linear or cannot be :
; linearized, ;
o
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4.2 Methods for Minimization

In order to focus our attention on the minimization of the
objective function s(g) of equation (4.7), we revise p to include
both physical parameters and design parameters, and y* to include
both experimental data and erroneous design data, when necessary.
We would 1ike to emphasize that the minimization of s(p) is a
general ized estimation procedure of many estimation methods. Some
widely used numerical techniques of minimization for getting the

optimal estimate are reviewed and discussed in this section.

4.5.1 Linear System

The Tocation of the unique minimum of the objective function
s(p) of (4.7) for the linear system in (4.14) can be evaluated,

analytically, as

o= HHE Eilx* * Eéleo s (4.22a)
where
T.-1 -1
H = (F EXE * EP_ ) (4.22b)

is tne Hessian (the matrix of second derivatives) of s(p). It can
be evaluated prior to the finding of p* in a linear system because

it is not a function of p*. The solution p* exists providing that

.........




the inverse of H exists. The most complicated step in solving for
p* is, tnerefore, to invert H. Gaussian elimation and some of its

variations such as the LU and LLT

decomposi tions which are more
convenient for numerical implementations are generally used to
perform the task(Dahlquist and Bjorck, 1969).

On the other hand, the problem can also be solved by using the
more powerful although less efficient SVD as discussed earlier, so
that resolution and information distribution can also be analysed.
In order to use the SVYD, the eigenvalue-eigenvector problems of
(4.18a) and (4.18b) must be attacked. This causes loss of
efficiency because finding eigenvalues is a time consuming task.
The numerically stable QR algorithm for finding eigenvalues and the
inverse iterative methods for evaluating eigenvectors are
recommended (Acton, 1970).

e
4.5.2 Nonlinear System

Numerous methods for minimization have been developed in recent

years, but there is no single scheme that works for all problems. A
method may work well for one type of objective function but fail for

another type. However, most of the methods are iterative in nature,

requiring an external initial guess g, or the minimum-point p*,
and then generating an internal sequence of points at p=p; with

1=2,3,..., progressively, which hopefully converges to p*. An

iteration is the process of generating a new point in the sequence.
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{5- A1l iterative methods are based on the fundamental reasoning
EEQ described pelow.
o At the ith iteration, s(p) near py may be evaluated as
SR
ﬁ( :_)
7 S(p,*+sp)=s*gl sp+(1/2) sp' H. sp*0( [sp|3) (4.23)
i_‘_. Pi78P1=5;79; 8P Sp H;¢p LE" ’ .
: o
where sp is a small vector displacement from p;, s;=s(p;), and
Qi=3(2i) and ﬂi=ﬁ(2i) are the gradient vector and Hessian of
t*tt s(p) evaluated at p , respectively. Suppose p; is in the
-fi? quadratic region surrounding p*, so that terms of order ¢p 3 are
negligiple and g(p;*sp) can be expressed as
S8 9(pi*ep) = g; * Hysp. (4.24)
E;*' Since g=0 at p*, the step (vector displacement) that reaches p* is
e -1
o P = -H;"9y. (4,25)
:ﬁjﬁ The Newton-Raphson (N-R) method adopts the above scheme
_b?; explicitly, by setting the ith step sp=p,,,-p; exactly equal to

-_}lgi. The N-R method works well for weakly non-1inear

systems, and in fact it works perfectly in a linear system by

(]
»

requiring only one iteration. Unfortunately, it also fails to work

.
LY
'l

in many cases due to two major weaknesses. First, the method is
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mathematically unstable, that is it does not guarantee convergence
to a minimum, because an N-R step may not be an acceptable step. An
,§i5 acceptable step is a "down-hill" step such that s(p.,;)<s(p;):

T covergence can only be guaranteed if all the steps are acceptable.
A down-hill step is ensured if it is taken along a down-hill

direction 91 such that

o 9 = 843> (4.26)
T where §; is an arbitrary but positive definite nxn matrix.
Realizing that the ith step direction of the N-R method is the one
given in equation (4.25) with ﬂ}l replacing G , and since H,

can be nonpositive definite when P4 is not inside the quadratic

N region, stepping up-hill is highly possible along a N-R direction.
The second major weakness is that, at each iteration, the method
- requires the evaluations of ﬂi besides 9is and in addition, it

- also requires the inversion of H . The analytical expression of H
as a matrix function of p is quite often very difficult to derive,
o hence the evaluations of H at Ei's place a heavy burden on the

in’ user. This cannot be too pleasing when approximately n2/2
complicated function evaluations are needed at every iteration, not
gf%. to mention the heavy computational burden of inverting large ﬂi

matrices.
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,{;g In view of the defects of the N-R method, stable and more

:§£3 efficient methods have been sought by many mathematicians. As a

:‘iﬁ consequence, iterative descent gradient methods (gradient methods

{{f for short) were developed. These methods abate the burdens on both ;
i;; the user and computer by requiring only the evaluations of g;'s é

" but not 51'5 and ﬂ}l's. More attractively, gradient methods

are stable in general cases. Hence, the two major weaknesses of the

i b

N-R method disappear in gradient methods. .

- At each iteration of all the gradient methods, a down-hill
direction is selected at the current point and then an acceptable
step is taken. This is the reason for their stability. The ith

- step direction is evaluated by equation (4.26) and 91 is always a

down-hill direction because the positive definiteness of Gy is

ensured by the methods. Different gradient methods choose the step
directions (or gi's) differently but a similarity of all is that i
second-derivative information is estimated and incorporated in Ei

Lz?, at each step, which gradually evolves to become the inverse Hessian ]

e at p* so that equation (4.26) also evolves to become equation
(4.25). As a result of this, p* is located. Gradient methods
‘;Ef pasically fall into two categories: (1) those that require all the
;Efi p; 's to be the minimum-points along gi's, for example, the

method of Fletcher and Powell (1963), and (2) those that take

acceptable steps but not necessarily reaching the minimum-points

if‘; along di's in all the steps, for example, the Marquardt's method

(1963). The trade-off is that the former method requires more
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function evaluations per iteration but less iterations while the
latter methods require less function evaluations ﬁer iteration but
more iterations, However, the total number of function evaluations,
which determines the efficiency of a method, is usually the same
order of magnitude for the two different approaches.

Fletcher and Powell's method (1963) is used in our study. Its
use is solely a matter of preference, and we do not claim that it is
the best method for the investigation since we have not tested other
methods. However, we have found its performance to be more than
satisfactory. Al though the method requires, at each iteration, to
step to the minimum-point along the selected direction, it is still
quite efficient because few iterations are needed. It can be shown
that if P; is within the quadratic region of a minimum, the method
tnen only requires at most n more iterations to converge to the
minimum, where n is the number of unknown parameters of s(p). The
method takes very small steps at the beginning of the minimization
process but follows with rapid descent after ﬂ(gf)'l has been

closely approximated by gi.
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o 4.6 Error Of The Estimate

An estimate has no meaning by itself since it should not be
trusted for the interpretation of the true physical situation
without the knowledge of its error. To investigate whether an
estimate is well or i1l determined, one can either employ
nonstatistical response surface techniques (Bard, 1974) or,
similarly, the statistical analyses of variance (Jenkins and Watts,
1909, Bara, 1974).

In the response surface technique, we say that there is no
reason to prefer the minimum at p* as the solution over any other
value of p for which

s(p)-s(p*) ~ 1/2 (g-gf)Tﬁ(Ef)(g-gf) < €, (4.27)
where ¢ is an arbitrary small constant and ~ is replaced by = when
the system is linear, so that the larger (smaller) the diagonal
elements of H(p*) (ﬁ(g*)'l) are, the better the corresponding
parameters are estimated.

On the other hand, statistically, an approximation of the

logarithm of the posterior distribution can be expressed as
ToglP(p [y*)] 0¢ -1/2 (p-p*) TH(p*) (p-p*). (4.28)

This corresponds to approximating the posterior distribution with a
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o
fi N normal distribution, and the approximation is good near p* if the
f: objective function is symmetric at the minimum, The tails of the
- distribution are of no concern in the error analyses. Assuming that
AN p* is quite close to the expectation, it then follows that an
iég approximation of the covariance matrix of the error of the estimate
'?:}7 is
c , = Hpx)t (4.29)
Ap
T‘%; Thus, the diagonal elements of ﬂ(gf)'l are approximately the
n; variances of the estimates of the parameters.
T It was shown that whether considering statistics or not, :
';- ﬂ(gf)‘l is the important measure of error of p*. We would like to
C@Z mention that a problem in design is to pre-arrange the design
fem‘ parameters so that the diagonal elements of ﬂ(g*)'l are minimized ¥
: for an expected range of possible values of p*. This design problem i
fifi is easier to tackle if the system is linear since in this case H b
A;_\;- does not depend on p. i
fb;ﬁ Since H(p*) is not a diagonal matrix in general, the errors of f
ki&f different parameters can be correlated. However, it is of interest g
;j{ in many aspects of error analyses, for example, statistical ?
Efgf inference, to 100k at uncorrelated errors. As a result, a linear
‘;ff transformation
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"9
4

p" QTE (4.30)

of the original parameters p is often exercised so as to bring about
uncorrelated errors of the transformed parametars; Q is an nxn
matrix. In other words, uncorrelated errors of 1inear combinations
of the original parameters are analysed. These orthogonal
combinations can be found by a SVD of H(p*) or ﬂ(gf)'l. Let us

consider the decomposition of H(p*) such that
H(p*) = gD @', (4.31)

where D is a nxn nonnegative definite diagonal matrix consisting of
the nonnegative singular values. The substitution of equation

(4.26) in equation (4.24) with E"?QTE and E"*=9TE* gives
ToglP(p" |y*)10c-1/2 (p"-p"*) TD(p"-p"*), (4.32)

where p"* is the estimate of p". It is seen that D is the
covariance matrix of the error of p"*, and the errors of these
transformed parameters, which are linear combinations of the
original parameters, are not correlated because D is diagonal.
o In a nonlinear system, since the posterior distribution may not
;;;f be unimodal, many initial guesses are required in the minimization
i;;; procedure inorder to expose the least minimum or to see if all of
p‘}, them converge to the same p*. If more than one qlobal minimum is

found, the estimation problem is nonunique.
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4.7 Goodness Of A Model

Even more important than judging the reliabilty of p* is
Judging the reliability of a model, The goodness of a model can be
assessed by analysising its final residuals. A model can never be
proved correct in principle, but it can be proved incorrect or
inconsistent or inferior to other models. Some uniform measures of
goodness based on the final residuals can be evaluated for different
but plausible models, which can then be compared to discriminate
between models and various hypotheses.

If a model is accurate and parameters are well determined, the
residuals will reflect the experimental random noise. In fact,
residuals are piased estimates of noise: they should be smaller than
the actual random error on the average (Bard, 1974). Some of the
most common tests on residuals in time series are Chi-square
yoodness-of-fit, runs and correlation tests (Bendat and Piersol,
1971), which are used to confirm a model by verifing noise
statistics such as normality, stationarity and lack of correlation.
However, tnese tests are not applicable when only a few realizations
of the same random variable are made, as is usually the case in

expensive oceanographic experiments, for example CTD surveys.

Fortundtely, in model discrimination, there is less interest in
knowing how well the residuals of the best model resemble the noise
properties than in knowing how well the data are resolved by the

best model as compared to the other models; keeping in mind that Q
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some of the noise properties are assumptions anyway.

In what follows, we present some unsophisticated, yet very
useful , measures of goodness of model, which are often sufficient to
serve the purpose of model discrimination,

The simplest of all measures is the weighted sum of products of

the final residuals, that is

e, (4.33)

|
|
< @

where R is a Chi-square distributed random variable with m degrees
of freedom, e is the final residual vector, and the adjusting factor
c is the total number of experimental, a priori, and erroneous
design data divided by the same number less the total number of
unknown parameters. If a priori data are available and used in the
objective function of equation (4.7), then c=m*ntr/(m*ntr)-(n+r)
sm+ntr/m. If a priori data are not used, then c=m*+r/(m+r)-(n+r)
=m*r/m-n, where r is the number of erroneous design data or
parameters. The factor c is needed to adjust the inverse covariance
matrix of noise to equal that of the final residuals due to the bias
(Bara, 1974). A significance level can be selected for rejecting
models on the two edges of the distribution.

In general, the smaller the misfit between the data and the
model , the better the model and the resolution in the solution (or
parameter) space are. However, care must be taken when the misfit

is extremely small, because we may have an unstable system instead
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Backus and Gilbert (1970) have shown that

of a perfect model.
trage-off between resolution and the statistical reliability of the
estimate exists when noise is present, Moreover, for an
ill-conditioned system, the variance of the estimate increases
without bound as resolution is pushed beyond the 1imit imposed by
the data. Thus, a model is acceptable if and only if both the
variance and R, which is a measure of misfit and hence of resolution
also, are acceptable.

To illustrate the trade-off between resolution and reliability,
consider the linear system (4.15). An estimate may be constructed
using (4.19), where the basis vectors vjare weighted and then
summed to give the estimate, Since the weighting on j is the
product of the inverse singular value x31 and the projection of
tne observations y' onto the corresponding eigenvector Ed in the
data space, the small xj's can translate the experimental noise
into large estimation errors. Clearly then, the reliability of the
estimate can only be improved by degrading the resolution, that is
giscaraing or down-weighting the Xj's that have small A

There are two other measures which are often used to judge the
success of a model in predicting (interpolating) data. They are the

correlation coefficient between observed and predicted signal

e e xn po)

C = (4.34)

(l*TE;Il*)I/Z(iT(i*, *)E-lli(y, *)" /e
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and the amount of signal energy resolved by the prediction

iT(i*:B.* )_Cilﬁ(’i*»P_* )

L = x 100 percent. (4. 35)

L*T_C;lx*
The larger C and E are, the better the model fits the data, but
again, these two measurements can be misleading in the case of
instability.

The similarities in shape and amplitude between the observed
siynal and the model prediction are measured by C and E,
respectively. In general, C and E are independent, but for a least
squares minimization, 100C equals E]/2 for the total set of data

points. However, for individual subsets of data, C and £ remain

use ful separate pieces of information.
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CHAPTER 5
ESTIMATION OF WAVE PARAMETERS AND WAVE DYNAMICS (1):
METHOD AND RESULTS

5.1 The Estimator

Our parameter-estimation problem can be phrased as the inversion
of the sound-speed perturbations sc based on the data, and
contrained by the dynamics of narrow-band planetary waves. A
consequence of the addition of the dynamical constraint on sc is the
modification of the system to be inverted from highly
underdetermined to highly overdetermined. For a small number of
waves, the system can be well-conditioned as well, It was the
expectation of a small number of waves and of a well-conditioned
system that led us to use the MLE estimator instead of the MPD
estimator. It was learnt in the estimation process that as the
number of waves W increases, the condition of the system
deteriorated. However, this has no effect on our investigation,
because the optimal wave fit, corresponding to W=3, was unique and
well-determined.

With reference to the discussions in Sec. 4.3, the MLE estimator
can be formulated as the minimization of an objective function (i.e.
1ikelihood function). Treating the 130 modal-ampl itude data
(ag; J=1,...,130), the 7 time series of sound-speed

perturbations (cc§k=cc§(t=3k days); k=0,...,26 and
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J=1,...,7) and the 58 time records of travel-time perturbations
(atgk=6tg(t=9k days): k=0,...,8 and j=1,...,58) as 3

indepenagent data subsets (refer to Table 3.2 for the sources of
data), and further treating the uncertainty in the nominal
horizontal positions, ax, and the unknown horizontal displacements
(sx, =6x(t=9k days); k=0,...,8) of the acoustic moorings as errors
in the design parameters, the objective function can be cast as a
sum of 5 constraining functions of similar forms of weighted sum of
square of residuals. Because there were 9 acoustic moorings, ax and
8% are l8-dimensional vectors, and we denote their jth components
by ax; and ijk’ respectively. The objective function can thus

J
be expressed as

(R, 8X,8%g, ... 58%g) = S, (P)*S (P)*s o (P,aX,6Xs,...,6Xg)

s, (8X)*s  (8X5,...,6Xg) (5.1a)
with
130
-2 r.0.m 2
5, = 1/2 ZE: °a,j[aj'aj(3)] . (5.1b)
=1
7 26
-2 0 m 2
S, = 12 ZE: °5c,jk[5cjk'°cjk(9)] , (5.1¢c)
j:l k:o
and
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58
-2 0 m 9
e r Z E ot ,jk Lt jk -6t g (Ro2x, 8, 117 (5.1d)
J=1 =

representing the constraints imposed by each of the data subsets on
a wave -propagation model (Model 0, 1 or 2) that is characterized by
a corresponding set of unknown parameters p as described in Sec.

m m m . .
3.4, where ajs &gy and Gth are defined in (3.19),
(3.0) and (3.24), respectively. Furthermore,

18
-2 2

j=1

[74]
"

and

18 8
s = V2 Z Z cx,Jk Jk (5.1F)

j=1 k=0

represent the constraints imposed by the erroneous design data on
the incorrect horizontal mooring positions. In writing down (5.1b)
to (5.1f), we have assumed uncorrelated experimental noise and

design-parameter errors, with the variances of ag, &gk’

0 2
thk’ AXJ and &x jk being denoted by %.,j* %e,ik?
cit ik ? °§x j? and °§x j? respectively. If a priori

information on p were incorporated in the estimator, (5.l1a) would

have an additional constraining function, again of a similar
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form, The minimum point would then be the MPD estimate and the
variance of the estimate should be reduced.

Although a priori information was not incorporated explicitly in
the estimator, it was utilized in many related occasions. An
implicit usage was in the filtering and reductionof the data (Sec.
3.3). On the other hand, the optimization orminimization of (5.1)
was facilitated by reasonable initial guesses of p that are
consistent with the prior information, for example, the guessed
wavelengths are of order 100 km and the guessed wave amplitudes are

of order meters per second.
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5.2 Assignment Of Noise Variances

In almost any parameter-estimation problem, the variances of
measurement noise are generally fairly accurately known, On the
other hand, one usually has less idea or no idea at all of what the
variances of the model noise might be, especially when the
estimation problem corresponds to model identification. However,
this inexact knowledge of noise statistics does not in general
introduce any major obstacle in solving estimation problems. There
are two reasons for this: first, most estimators are not sensitive
to slight variations in noise variances, thus as long as the
assigned variances are within reasonable ranges of the true
variances, the estimate will not be greatly affected. Second, all
estimators also generate an estimate of noise, besides an estimate
of the parameters, so that one can rely on the noise estimates
themselves, that is the final residuals, for refinement of the
assigned variances in an iterative estimation process when
necessary. The assignment of the noise variances in (5.1) is
described below. The assigned values were later found to be
consistent with the final residuals, i.e. the final residuals are
not consistently larger or smaller than the assigned standard
deviations.

By analysing numerous sound-speed profiles acquired by Piips
(1967) between Bermuda and Eleuthera, Mooers (1974) found strong

evidence for the existence of a first baroclinic semidiurnal tide

........
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with an amplitude of 0.7 m's in sc at 550 m depth, Furthermore,

nonlinear and higher-mode perturbations are neglected in all 3
wave-propagation models (Table 3.3). These neglected higher-order
perturbations combined with the internal tide are probably the major

contributors to model error. While the errors in the
modal-amplitude data are most sensitive to the internal tide due to

the lack of temporal filtering, the errors in the filtered sc time
In

records are most sensitive to higher-mode fluctuations.

addition, the sc time records are also subject to errors caused by

K'S and °a,j S

We guess that the 95,

vertical mooring motion.

should be roughly 1 n/s, and thus have set %,5=%c ]

all j and k.
Considering the measurement noise and internal waves and tides

alone, Cornuelle et al. (1985) have estimated the daily mean
2 In order to include

variance of travel-time noise to be 3.6 ms
the errors introduced by the neglected higher-mode perturbations and

current effects, and the assumption of travel-time linearity in our
2 to their estimated variance, that

is we have made °§t jk=3.6+25 msz. We note that some of the
travel times were missing or not resolvable from the 58 ray paths

models, we have added 52 ms

used on some particular days, (especially, during the later period,)
and in these cases we set the corresponding variances to infinity.

The available tracking data indicate that the horizontal mooring

Therefore, we have set

displacements were of order 200 m.
k=200 m and 20 m for the untracked and tracked displacements,
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respectively. The 20 m standard deviation represents the
measurement error expected from the navigation systems. We have
further set °Ax,j=500 m for all j, which is a reasonable value as
indicated by the observed travel-time perturbations.
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5.3 Results

The iterative descent gradient method of Fletcher and Powell
(1963) was used for the wave fits, that is the optimization of (5.1)
with qifferent wave-propagation models and numbers of waves. In
each minimization, after accepting an initial guess of the unknown
parameters HF‘E’Ai'Eﬁo""’ﬁfa)’ the method then proceeds to
locate a minimum by estimating, progressively, the inverse Hessian
matrix ﬁ*’l (i.e. the inverse of the matrix containing the second
derivatives) of s(u) at the minimum point u* (Sec. 4.5.2). Thus an
estimate of u, u*, and an estimate of the error-covariance matrix of
u*, ﬁ*'l , are generated, simultaneously.

For each of the three models, one to five waves were fitted to
the data. At Teast four different initial guesses of p for a given
model (Model 0,1 of 2) and number of waves (W=1,2,3,4 or 5) were
used in the optimizations to explore the least minimum (i.e. the
solution) and to investigate nonuniqueness. All the initial guesses
of ax and sx, were null vectors. While the wave fits with W<3 are
unique, those with W>3 are not, In each fitting with W<3, mnst of
the initial guesses converged to the same stationary point where the
least minimum occurs, and although a few initial guesses converged
to different stationary points, the corresponding minima are
considerably larger. For each of the wave fits with W>3, different
initial guesses resulted in different minima of approximately the

same size, hence a unique least minimum could not be identified.
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The change from uniqueness to nonuniqueness as W increases is a
demonstration of the trade-off between resolution and stability. As
W increases, so do the magnitudes of the wavenumber estimates.

Thus, finer-scale structures of the perturbations are intended to be
resolved with a larger W, but because of the inadequacy of the data
in resolving them, the system for sc is rendered underdetermined.

InCornuelle's (1983) time-independent inversions, no dynamical
constraint is imposed on thé solution for sc, and in order to ensure
uniqueness, he incorporates an a priori covariance of sc that is
assumed to be horizontally Gaussian with a decay scale of 100 km in
the estimator. This is the same as requiring the solution to be
smooth in space. Cornuelle points out that the solution for sc is
not sensitive to small variations in the assumed spatial decay
scale. We have encountered a similar situation in our
time-dependent inversions. An interesting fact is that although the
wave-parameter estimates are nonunique in the cases of W=4 and 5,
the solution for the corresponding sc is unique. That is, the
estimated fields of sc, and the amounts of resolved data variance
associated with the different stationary points are practically the
same. Indeed, the constraints imposed by the wave dynamics are
analogous to the criterion of smoothness, thc diiferent stationary
points are analogous to the variations of the decay scales in space
and time, and a time-dependent inversion is not sensitive .. small

variations of poth decay scales.
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In order to assess and compare the different wave fits so that
the optimal model and W may be identified, a simple measure of
goodness, that is the weighted sum of squares of final residuals R,
defined in (4.27), was computed for each of the wave fits. When the
estimate is close to the true value, the probability distribution of
the final residuals is approximately r ~~mal (because the noise
distrioution is normal) and the covariances of the residuals and the
noise are approximately proportional to each other (Ch., 4, Sec.
4.3). Thus, R is approximately a Chi-square distributed random
variable with m=841 degrees of freedom where m is the number of
data, and the 0.0l significance level of the random variable is at
R~940., In Fig. 5.1, we plotted R versus W for each model. It is
seen that the performance of Models 1 and 2 is much better than that
of Model 0. While none of the wave fits of Model 0 passes the 0.01
significance test, the fits with W=3,4 and 5 of Model 1 and 2 are at
and peyond the 0.0l significance level. Althougn Model 1 and 2
perform equally well, the estima ad growth rates of the wave
amplitudes in Model 2 do not differ significantly from zero and, in
fact, their signs are ampiguous because their rms errors are larger
than the estimated growth rates themselves. The lack of ability to
determine the growth rates is not surprising, however, because (1)
resonant interactions should be rare occurences since the forced
waves can grow if and only if they satisfy the dispersion
relationship, and (2) even if resonance actually ocurrs, the time

scale of the growth, in weak-interaction theory, is much longer than
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a wave period and , hence, data measured within a wave period cannot
be adequate for observing such phenomena. The reason for fitting
Model 2 to the data is to see if there are any surprises that are
inconsistent with the theory. For Model 1, the data variance
resolved increases by 20 percent as W changes from 2 to 3 and
increases by as little as 5 percent as W further changes from 3 to 4
or 5, Also,‘we must keep in mind that W=4 and 5 correspond to
unstable wave fits. Thus, an overall judgement clearly favours
Model 1 to be the optimal wave-propagation model in which a mean
flow is present and W=3 to be the optimal number of propagating
first baroclinic waves.

To make further assessments, we computed for each wave fit the
correlation coefficient Ci between the ith independent data subset
and the fit, and the amount of variance in the ith data subset
resolved by the fit, Ei’ using (4.34) and (4.35), where i=1,2 and
3 aenote the data subsets of modal amplitudes, sc time records and
6t time records, respectively. For Model 1, that is the optimal
model , Ci's and Ei's versus W are plotted in Figs. 5.2a and b,
respectively., At W=3, i.e., the optimum, we obtain Ci's of 0.8,
0.9 and 0.98 and Ei's of 78, 82 and 96 percent with i=1,2 and 3,
respectively. There is no inconsistency although C3 and k5 are
considerably larger, because a Targe portion of the variance in the
st time records is resolved by the determination of the
moor ing-position errors alone. The consistently high correlations

and resolutions are a strong evidence of the existence of three

...............
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Figure 5.2a. Correlations of the travel-time perturbation records
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first vparoclinic planetary waves in the tomographic region during
the experimental period. The optimal values of the parameters for
the waves and mean flow, and their standard deviations (square roots
of the diagonal elements of ﬁ*‘l) are shown in Table 5.1, 1In the
tanle, the phase and group velocities, the Doppler shifts and the
shifted periods themselves, as well as the directions and lengths of
the waves are presented. Although the mean flow is very weak, it

must be taken into consideration, since it speeds up the phase

propagation considerably by generating Doppler effects; it is thus

vital to the success of the wave fit.
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Table 5.1
7
‘ The Optimal Estimate Of The Wave Parameters
(a) Independent Wave Parameters; the numbers behind the + signs are
the standard deviations
wave i.d, 6C amplitude wavenumber vector phase constant
i.d. no, Aj (Ws) ki (1/km) 15 (1/km) vi (rad.)
i
1 1,10#0.13 -.0118+,00I1 .0203+#.00I0 2.I13#0.19
2 2.28t0,12 -.0066t.0005 -.0198t,0007 1.51%0.12
3 1.7340.09 -.0119+4,0005 -.0034+.0008 -0.0640.11
mode no, mean-current modal-amplitude vector zero-reference sc
m ug (cw's) vo (ew's) bo (W's)
0 -1.70%0.23 0.1120.08
) 1 -0.76t0.13 0.39:0.09 -1.46%0.21
{
(b) Dependent Wave Parameters
~\ wave wave direction wave Doppler shift
i.d. no. Tlength of phase period period
o i (km) (degree) (days) (days)
i 208 120 L7 -202
2 300 -108 344 -164
3 509 -164 121 =77
wave phase velocities group velocities
AR i.d. no. eastward  northward eastward  northward
S i (cm/s) (cm/s) (cm/ s) (cn/ s)
I 5,25 3.06 ~7.7% 0.23
-~ 2 -3.19 -1.06 -4.30 1.16
XS 3 -5.04 -17 .69 -4.23 0.53
L7
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The seven observed time records of sc are plotted in Fig. 5.3to
5.9 together with the optimal fits. It is seen that the
observations and the optimal interpolations compare favorably.
Furthermore, some secondary perturbation with a period of about 20
days superimposed on the primary perturbations created by the 3
linear dispersive waves are found consistently in all the time
records, The secondary oscillations were most profound at the
mooring site E2, i.e., at (x,y)=(150.7,13.6) km. Because the
frequency is below the inertial frequency, this oscillation cannot
be due to internal waves; we speculate that the secondary
perturbations were caused by the forced waves that oscillate at
frequencies equal to the sum of the frequencies of the interacting
barotropic and/or baroclinic waves.

To demonstrate that the observed pattern of the fairly
complicated system can indeed be reconstructed accurately by the
ygradual evolution of three waves, we show a time sequence of the
estimated and surveyed sound-speed maps at a depth of 700 m in Fig,
5.10 to .16, The average sound-speed at that depth is 1506 w's.
The estimated perturbed sound speed on yearday 66, 83, 102, 120 and
137 are contoured in Fig. 5.10, 5.12, 5.13, 5.14 and 5.16, and the
observed sound speed from the first and second CTD serveys were
contoured in Fig. 5.11 and 5.15, respectively. It is seen that the
waves generated a trough that was moving slowly to the west and then
produced a front that was advancing from the northeast during the

later period.
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The covariance matrix ﬂ*'l

of the wave-parameter estimate

p* (i.e. the corresponding block in the inverse Hessian matrix of
the objective function evaluated at the minimum point) gives
indications on which wave parameters, or linear combinations of wave
parameters, are well determined, and which are poorly determined. A
simple measure of the quality of the estimate is given by the

1

diagonal elements of ﬁ*é , which are the variances of the

errors in the estimate; the standard deviations are listed in Table
5.la. However, the presence of nonzero off-diagonal elements
implies that the errors are correlated, and a full description of
:;fz the error structure must take all the elements of the matrix into
fﬁ}? account, As discussed in Sec. 4.6, a full description may be

s obtained by finding the eigenvalue decomposition of ﬂ*é}

_&n: that ﬂ*é1=g D gT, where D is the diagonal matrix containing

such

the eigenvalues and U is the matrix containing the eigenvectors in
its columns, so that new variables defined by B'=HTE and
representing a set of linear combinations of the wave parameters
would have uncorrelated errors in their estimate E‘*:ng*. The
error variance of p'* is D. We have performed the decomposition and
A found the set of linear combinations of wave parameters. We have

— found that all the 17 linear combinations were well determined. The
;}'i difference between the variances of the best and the worst

ﬂ;ﬂ; determined 1inear combinations is small. The 17 linear combinations
l;ﬂf will not be Tisted since they serve no further purpose in this

investigation,
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3
m Finally, it is desirable to obtain an error estimate of the

R estimated sound-speed perturbation cc*:scm(L ) due to the error

ap* of the estimated wave parameters p*. Through a linearization of
the wave and mean-flow induced sound-speed perturbation acm(g)

about p*, the error of sc* can be approximated by

m T
ascx ~ [ 3¢ (*) Ap*. (5.2)
P

It then follows that the variance of ac* can be written as

M,y T m .
casc¥y ~ [38C7(RX) 7 ya-lpaectp*) g (5.3)
) T
where ﬂ*él is the covariance matrix of ap*. In Fig, 5.17, 5.18 )
and 5.19, we show the contour plots of the standard deviation of sc* q

(i.e. the square root of (5.3)) at a depth of 700 m on yeardays 83, ]
102 and 120, respectively. Because the densities of the ray paths 1
and the CTD stations were much higher in the middle of the area, the ?
errors are smaller there. Furthermore, since there was an

enviromental mooring E2 on the southern boundary, the errors near

this boundary is smaller than those near the northern boundary where
no enviromental mooring was deployed (see Fig. 3.1). The constraint

imposed by the wave dynamics had introduced a high correlation
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between the sound-speed perturbations at different locations and
times; thus the errors in all the maps stay within a pretty narrow

range,
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Figure 5.17. Error map, showing contours of the standard deviation
at a depth of 700 m of the optimally estimated sound-speed
perturbations in the wave field in the experimental square on

yearday 83, Contour interval is 0.05 m/'s.
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CHAPTER 6
ESTIMATION OF WAVE PARAMETERS AND WAVE DYNAMICS (2):
DISCUSSION AND CONCLUSIONS

6.1 Summary Of The Wave Fits

Using estimation theory and optimization techniques, we have
studied the existence and dynamics of dispersive baroclinic
planetary waves. The estimations were based on the profile, point
and integral measurements of sound-speed (or temperature)
perturbations obtained in the 1981 Ocean Tomography Experiment.
Maximum Likelihood estimators that correspond to least-square
fitting were employed. Many other commonly used estimation or
inversion methods are analogous to the Maximum Likel ihood method and
the technique of least-squares, that is the generalized estimation
or inversion procedure is the minimization of an objective function
of a weighted sum of products of residuals as discussed in Ch, 4,

A range of one to five waves that propagate according to three
plausible models were fitted to the data. The properties of the
different wave fits were then compared so that the most consistent
propagation model could be identified and the optimal number of
existing waves could be estimated. The data set used in the
fittings was derived from the measurements through filtering and

data reduction,
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The 'best' fit can unambigously be identified to correspond to

t% three waves that evolved under the presence of a mean flow. The

S

vl evidence of the existence of the waves is supported by the high

ASE correlation between the fit and the observed signal (>0.88) and the
f; large amount of signal energy resolved (>78 percent), in each of the
LE three independent data subsets. Furthermore, the high correlations

, and resolution cannot be a result of ill-conditioning in the system

.Ef of model equations because the optimal solution for the wave

i& parameters is unique and well-determined. As indicated in Table

!! 5.1, the rms errors are only about 10 percent of the estimate.
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6.2 Comments On The Wave Dynamics

Westward phase propagation is known to be typical of mesoscale
perturbations at mid-latitudes from previous experiments.
Consistently, as indicated in Table 5.1, the phases of the observed
waves were all propagating westward. The corresponding
group-velocity vectors have westward directions also, implying that
the waves were generated somewhere to the east of the experimental
region, therefore, the possibility that they were radiated by the
intense Gulf Stream can be ruled out. The three baroclinic waves do
not form a resonant triad since the sum or difference of the phases
of two of the waves does not equal the phase of the other wave.
However, the propagation of resonant baroclinic waves is still
possible because they could be generated by interacting barotropic
waves, The fastest oscillation that could be forced by the observed
baroclinic waves would result from the interaction between the lst
and the 3rd waves and would have a period of (1/117+1/121)'1~60
days. But, since the secondary perturbation which we have observed
from the moored time records of temperature has a period of 20 days
(see Fig. 5.3 to 5.9), it must be due to the interaction of
barotropic waves that have much higher frequency cutoffs.

In the absence of a mean flow, the short-period cutoff of
first-mode baroclinic waves is approximately 160 days, e.g. (2.52),
so that the waves cannot account for the high frequency content

(i.e. periods of 117 and 121 days) of the data. This is well
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demonstrated by the wave fits of Model 0. Although the mean
current, as estimated, is very weak (approximately 2 cw/'s), it
strongly alters the space and time behavior of the wave-induced
perturbations by producing large changes in the wave periods or
frequencies (the Doppler effects have reduced the wave periods of
the 3 waves by 202, 164 and 77 days, respectively). Thus, the weak
mean current has played an important role on the wave propagation in
the region.

The approximate solution for linear dispersive planetary waves
is obtained by neglecting the nonlinear and Tinear-coupling terms in
the horizontal-structure equations (2.43) for mesoscale motions.
Let us first comment on the linearization and then discuss the
linear coupling in the context of instability theory.
Quatitatively, the linearization is valid when the ratio of the
particle to phase speed of the waves is small when compared to
unity. As the ratio decreases, so do the nonlinear effects.
Therefore, by shortening the wave periods and hence increasing the
yhase velocities, a westward mean current can weaken the nonlinear
interactions between the dispersive waves, thus making the 1inear
approximation better. The magnitudes of the phase and particle
velocities of the observed dispersive primary waves were computed
and the results are presented in Table 6.la. Furthermore, the
magnitudes of the phase velocities of the waves, computed as if the
mean current were absent, are also presented in the same table. It

is seen that if the weak mean current were absent, the validity of

NI B NI
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the linearization for the wave motions would be harder to justify.
The pressure amplitudes of the secondary waves forced by the
observed primary waves, computed using (2.66), and the pressure

ampl itudes of the primary waves themselves are given in Table 6.1b.
The ratios of the rms pressure amplitudes of the secondary to the
primary waves are approximately 1/4., Thus, there could be upto a 25

percent error in the linearized wave solution.
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Magnitudes of the phase and particie velocities of the primary

gispersive waves; the phase speeds in parentheses were computed by

setting the mean current to zero.

wave i.d. no,.

phase speed

wave-induced current

i (cm/s) (e s)
1 6.1 (2.2) 2.2
2 3.4 (2.2) 4.0
3 18.3 (10.5) 1.8
Table 6.1b

Pressure Amplitudes Of The Primary And Secondary Waves
i.d. no. of ampl itudes of amplitudes of ratio of
interacting primary waves forced waves rms

primary waves

(10%kg/km s%)

(10%g/km %)

ampl i tudes

LI

1 2 .598 1.236 .035 .014 .02
1 3 .598 .935 .023 .330 .30
2 3 1.236 935 .044 155 10
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Since we have observed a horizontally stratified flow with
vertical shear, we shall investigate the stabilitity of the flow in
the presence of wave disturbances. The corresponding instability
phenomenon is baroclinic. When it occurs, the available potential
energy of the sloping-isopycnal mean state is converted to the
potential and kinetic energy of the perturbations. A consequence of
baroclinic instability is that the wave disturbances will grow and
the tilted mean-state isopycnal surfaces will become more
norizontal, that is warm fluid will rise and cold fluid will sink.
Another instability phenomenon, which is not considered here, is
barotropic in which the kinetic energy of the mean flow is converted
to the kinetic energy of the perturbations. Barotropic instability
can only occur if the mean flow has a horizontal shear. The
interested reader is referred to Pedlosky (1979) and LeBlond and
Mysak (1978) for discussion on both barotropic and baroclinic
instabilities.

Mathematically, the 1inear couplings in (2.43) give rise to
barociinic instability. Assuming the ocean bottom is flat, dropping
the nonlinear terms, and performing a triple Fourier transformation,

(2.43) can be cast as an eigenvalue problem in matrix algebra:

a4 A
4 Qo | A

-
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with

. ajy = 25K+ tugkevgh), (6.1b)

k=+1

A A A e
A A
e

+ (U ktv.1) + K+ v, 1 +r? 6.1

~x“‘~)’
< k™+1%+2 g k™+1% 2y

-8k

ulk + vll (6.1d)

1
[
—
N
[}

and

Zﬁﬁé a, (u1k+v11) - (6.1e)
T k +1 N

)
o where ¢;1,=1.932 is evaluated by (2.36b), 1=5.149x10"% kn'2

is the inverse of the internal radius of deformation of the lst mode
\ijf squared and fy(k,1,0) and p;(k,1,0) are the spectra of the
modal-ampl itude functions of the 1st and 2nd mode perturbation

."."-"""
. k) "'

pressures, respectively, as defined in (2.47). The modal-amplitude

LA by

f? vectors of the barotropic and baroclinic mean currents are denoted
3;? Dy (uo,vo) and (ul,vl), respectively. For a given

= wavenumber vector (k,1), the wavefrequencies o, that is the

’.

eigenvalues, are given by

....................
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= 15
o~
S
\. <
- s
N ) 2 1/2 -
S o (K 1)=(ayy%ap5)/2 + [(a))-2y,) *4ay, 2,17 7/2
:l:' (6.2) ¢
S
;7; Note that the coupling is caused by the baroclinic mean current 5
fﬁ; only, and when coupling is neglected o_ and o, are the same as "
the frequencies of the diépersive barotropic and baroclinic waves, 5
i;ﬂ respectively. For disturbances with (k,1)'s satisfying B
P
= 2
= (ay3-a50)" < -4a),8, (6.3)
the wavefrequencies are complex. Under this condition, since o,
- and ¢_ are complex conjugates, one of them must have a positive "
Jod imaginary part that corresponds to instability. ;
“-\: [
.&5; To investigate whether the observed waves are unstable, we }
f solved (6.3) for the region of instability in the wavenumber domain, jf
'} i.e., k-1 plane, using the estimated values of (uo,vo) and :?
f;; (uj,v). The shaded area on the k-1 plane as displayed in ¢
Fig. 6.1 is the region of instability. In the figure, we also plot
. the locations of the observed wave disturbances. The disturbances
- are all located outside the shaded area, implying that the waves are o
"ﬁ stable, at least in the general area where the experiment was
:ii conducted. However, we must warn that, as the waves approach the -
fi; western boundary, they may encounter changes in the direction and fi
o %
fz. intensity of the mean flow such that some or all of the three waves -
o ‘:




Figure 6.1. The stability of the vertically sheared mean flow in

the tomographic region in the presence of wave disturbances in the

first baroclinic mode. The region of instability on the

(k,1)-plane, i.e. in the wavenumber domain, is the shaded area, and

the wavenumber vectors of the observed disturbances (+) are in the

stable region.
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can pecome unstable and develop into intense eddies, This is
because, as the mean current becomes stronger, the region of
instability becomes larger; also as the flow direction changes, so
does the location of the unstable region.

In spite of the fact no inconsistency between the theory and
observations has been found, we recognize that a complete
investigation of the wave dynamics was disallowed by the limitations

imposed by the data. First, we were unable to observe any weakly

nonlinear phenomenon of the baroclinic perturbations because the

data occupy a time interval which is less than one wave period,
Secondly, due to the insufficiency of explicit current measurements,

we were unable to observe the barotropic waves.
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; 6.3 Comparison With The MODE Wave Fits

2! The Mid-Ocean Dynamics Experiments, MODE-O and MODE-1, were
S designed to investigate mesoscale motions and their role in the
general circulation in a ~400 km square region at 28°N, 69°40‘N,
Just north of the tomographic region. MODE-0 was a collection of
T several pilot studies that were carried out between 1971 and 1972 to
%E:; identify the space and time scales of the energies. It was then
. followed by MODE-1 in the spring of 1973, which is probably the most
Ezﬁ comprehensive large-scale experiment to date., MODE-1 lasted for \
:ff about 4 months. }
McWilliams and Flierl (1976) have fitted the planetary-wave
- model to the MODE-O and MODE-1 data sets, separately. While the
former contained only current-meter records from 7 separate moorings
and mostly from beneath the main thermocline, the latter was a much
N larger and more uniform data set, obtained from a variety of
instruments: current meters, moored temperature sensors, CTD's and
STD's, and SOFAR floats. The MODE-O and MODE-1 data sets have
durations of 3 and 4 months, respectively. In constrast to the
observational system deployed in the tomographic experiment, the
oféi: MODE arrays consisted of spot measurements only, which unlike the
\‘-*. acoustic travel-time measurements, could be severely contaminated by
aﬁf; undesirable small-scale features. q

3iTA In the same way as our study but for weighting, McWilliams and

Q;{. Flierl chose the optimal wave parameters to minimize a quadratic
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error norm for the differences between the data and the fit.
Instead of specifying the weighting factors in the‘error-norm
minimization according to the noise variances, as was done in our
stochastic estimates, they have assigned equal weighting to each
datum of the same type and made total data energies equal for all
types when incorporating data of different types. Under the
circumstances, we believe that their estimates do not differ
significantly from the stochastic maximum-1ikelihood estimates,
pecause estimates are, in general, not sensitive to the choice of
weignting factors when the number of data is much larger than the
number of unknown parameters.

The best MODE-O0 fit has a high correlation of ~0.8 with the data
and accounted for over half (~60 percent) of the data energy. It
consisted of a pair of barotropic waves and no baroclinic waves,
propagating in the absence of mean flow. The reason for not being
able to observe any baroclinic waves is probably that MODE-0 was
primarily an experiment of the lower layer (below the main
thermocline) where the barotropic-mode kinetic energy dominates.
Altnhough a few current-meter records from the main thermocline were
available, they came from only two horizontal locations. Therefore,
they were not adequate for resolving baroclinic waves, since each
wave involves at least 4 free parameters. In contrast, the
tomographic experiment was primarily for the observations of the
baroclinic modes. In the experiment, the acoustic array, the CTD

casts and the moored temperature sensors and recorders, all probed

the temperature field in which the baroclinic-mode effects dominate,
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and for the same reasons as above, the current data from only 2
t‘?: horizontal Tocations were inadequate for resclving barotropic waves,
Nonl inear interactions witnhin the MODE-0O wave fit and our wave
O fit to the data of the tomographic experiment were found to be weak:
'iﬁ. forced wave amplitudes were predicted by the weakly nonlinear theory
rbu. to De about 20 percent of the primary wave amplitudes. Thus both
sets of waves represent fully consistent 1inear solutions.

On the other hand, both barotropic and baroclinic waves were
:ifﬁ observable by the MODE-1 array that contained both adequate current
~§; and temperature measurements. The best MODE-1 fit, having a
correlation of ~0.7 and accounted for 1/2 of the data energy, has a
pair of barotropic and a pair of first-baroclinic waves. Consistent
with the MODE-O fit, no significant energy of the mean flow was
N found. However, unlike the other two fits, nonlinear interactions
e were found to be of marginal but uncertain importance within the
MODE-1 fit: forced wave amplitudes were predicted to be large and
e comparable to the primary wave amplitudes. But, by searching in the
L&,} data for the forced waves with the given frequencies and
wavenumbers, McWilliam and Flierl have found no significant energy
in them. To explain this, McWilliams and Flier] suggested that the
'iié; nonlinear transfers of energy might have acted in such a way as to
f;{, preserve crucial features of the linear solution, empirically.
il"x From the results of the 3 wave fits, we can summarize the
;ﬁ_{ dynamics of the mesoscale motion in the general area where MODE-O,

L MODE-1 and the tomographic experiment were conducted as follow:

............................
.............




(1) The motion appears to be dominantly wave-1ike: planetary
waves have consistently accounted for more than and about 1/2 of the
total signal energies observed in different places and during
different time periods.

(2) The vertical structure is dominated by the barotropic and
the first baroclinic modes, with the latter containing the greatest
fraction of the available potential energy among all the vertical
modes .

(3) Locally, the space-time behavior of the motion is well
predicted by the dispersion relation, i.e. linear dynamics. But, as
the lengths in space and time considered increase, the linear
prediction becomes less accurate; this is demonstrated by the fact
that the MODE wave fits, which involved a larger region and 1longer
durations, have poorer quality (i.e. smaller correlations and less
signals accounted for) than our wave fit. Thus, planetary wave
propagation is strictly a local phenomenon.

(4) Most of the waves observed in the three experiments have
westward group velocities, suggesting that wave disturbances are
originated in the east.

(5) The phase propagation is generally westward, and the wave
lTengths of the propagating baroclinic waves are typically of order a
few hunareds of kilometers.

(6) Evidence exists for the existence of a westward mean flow

with diminishing flow energy towards the north: a weak westward mean

flow with vertical shear was found in the tomographic region and
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vanishing mean-flow intensity was found in the MODE region.

(7) In each of the three experiments, MODE-O, MODE-1 and 1981
Ocean Tomography, the data exhibited more high frequency variability
than the wave fits. Therefore, nonlinear wave-wave interactions
must be consequences of wave propagation.

(8) Stronger nonlinear wave-wave interactions should occur in
the north, because the westward mean flow can reduce the
interactions in the south by increasing the westward phase

velocities there.
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6.4 Comparison Of The Different Mapping Methods
Previously, Cornuelle (1983) and Cornuelle et al. (1985) have
'.;§ used the same acoustic and hydrographic data to map the ocean.

-i:‘ Their mapping, however, was performed on an "objective" and "daily"
- basis, and the two sets of data were used separately in independent
fﬂ'_ lTinear inversions. The mapping performed by us differs from that of

;{ . Cornuelle et al. in three major aspects: (1) we have incorporated
?4;' the hydrographic and the moored temperature data together with the

’;?‘? acoustic data in the same inversions, (2) this mapping is

i "subjective" and takes into account the time-dependence of the

L field, and (3) the system being solved here is nonlinear with

el respect to the unknown parameters. By "subjective" mapping, as
 ¥;1 oppose to "objective" mapping, we mean that the space-time relation
?f i imposea on the unknown field in the inversion of data is a

J

deterministic one,.

In this section, we will first describe the method of Cornuelie
et al. and discuss the differences and similarities between our
methoa and theirs. We will then present some possible extensions of
their method to take into account the time-dependence of the field.

The advantages and disadvantages of the different methods will also

,
B TN LIS TV RPN

be discussed. A discussion on the improvement on the inversion

ey

result due to the incorporation of the spot measurements will be

presented in the next section. For the purpose of making the

algebra as simple as possible in this discussion but without loss of




generality, let us assume that the positions of the acoustic
moorings are accurately known in the following mathematical
formulations. (A discussion on the effect of unknown mooring motions
on the estimate of & is presented separately in Ch. 7.)

Cornuelle et al. wanted to obtained the best possible estimate
of the perturbation field &:(§3tk) of sound speed in space
5;(x*y,z) on the days t=tk's of the acoustic transmissions, based
on the acoutic data alone. They have chosen a linear estimator and
def%ned the best estimate to have minimum variance. Their method of
inversion is analogous to the objective mapping of Bretherton et al.

(1976), in which a specification of the autocorrelation function of

the unknown field is required. Cornuelle et al. have assumed that
the unknown field sc(x,t) to be horizontally homogeneous and
temporally uncorrelated. Based upon the analysis of Richman et al.
(1977) on the MODE -array data, they have taken the horizontal
autocorrelation function to be Gaussian in shape with a decay scale
of 100 km. Vertically, they have chosen to represent sc by the
empirical orthogonal modes derived from the MODE-hydrographic data.

Thus, the correlation function can be expressed as

1y 2 12 2
<5Ci(x,_y,t)éc,i(x|,yI,tl)>=0,‘?6(t‘tl)e_[(x-x ) "‘(y-y ) ]/(100 km) :

i=1,2,3,..., (6.4)

where 8C represents the horizontal structure of the sound-speed

perturbation associated with the ith mode and c? is the
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expected energy of 6C -
g?lz - The tomographic system solved by Cornuelle et al. is linear and

if?: may be cast parametrically, at time t,, as

¥ &]

I3

- a1t ) = Aalt) + v(t) (6.5)

.4
‘¢

i
e
’
13

where _aio(tk) is an mxl data vector containing the observed
travel-time perturbations, _v_(tk) represents the noise vector, and
g(tk) is an nxl parameter vector to be estimated, containing the
unknown amplitudes of the sinusoidal wavenumber components of

:_: 8¢y . Unlike the other quantities in (6.5), the 1linear operator A,
- that is an mxn weighting matrix, is time-independent, and A can be
evaluated using (3.8). Because cci's are spatially homogeneous,
the Fourier coiponents in the wavenumber spectra are uncorrelated,
implying that the time-independent covariance €y of a(t) is a

h diagonal matrix. Clearly, an advantage of choo;ing to estimate a
‘ instead of the 5c1-'s themselves is the minimization of the storage
area required in the computer. Since the system (6.5) is linear and
the sound-speed perturbation and noise are uncorrelated, the
Gauss-Markov Theorem immediately asserts that among all linear

estimates, the one with the smallest variance is

2 (1) = C (b IATCI )6ty (6.6)

A where

IR | | SO A SRS |
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Ta-1 -14-1
E_A_e*(tk) = Lt v- (tk)A+Eg ] (6.7)

is the error-covariance matrix of a*(t ) and C (t,) is the
covariance matrix of the noise !(tk) (Liebelt,_i967). An
interesting fact is that the same estimate can be obtained by
maximizing (minimizing) the corresponding 1ikelihood (objective)
function. This is not surprising, however, because as we may recall
from the discussion in Ch. 4, when the system is linear and the a
priori information is incorporated as data in the system, the
maximum-1ikel ihood estimate has the l1owest theoretically attainable
variance., Therefore, an obvious similarity between the method of
Cornuelle et al. and ours is that they both compute
maximum-1ikelihood estimates. However, they did not consider the
time-dependence of the field in their inversions; their estimates
thus were three-dimensional ones.

The generation of a four-dimensional estimate is more
desirable. One reason is that the quality of the estimate of the
unknown field is generally improved when the set of observations
used in the inversion is enlarged. In the detection of narrowband
planetary waves from the data, we have mapped the ocean on a
subjective and four-dimensional basis, by imposing that the local
sound-speed field is predominantly perturbed by the waves, That is,
in the inversions, we have required the wavenumber spectra to be
sharply peaked at some wavenumbers and the spectra at different

times to be related by the dispersion relationship. It is
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understood from inverse theory that, if the unknown function is an
impulse, the best linear estimate of the function will generally
contain side lobes in addition to a main Tobe at the location of the
impulse (Wiggins, 1972, Wunsch, 1978, etc.). The leakage of energy
to the side lopes and the broadening of the main peak is a
consequence of the lack of determining power which is always
associated with an underdetermined system. The implication is that
narrow-band planetary waves cannot be adequately resolved by
directly estimating the parameter vector a(t) that represents the
continuous spectral-amplitude functions. One way to eliminate the
side lobes and sharpen the main lobe is to reparameterize the
wavenunper spectra by the location, amplitude and phase of the
peaks, and tnhis is exactly what we have done to implement the
narrow-band constraint in the inversions.

The narrow-band constraint transforms the underdetermined 1inear
systems at different t into one overdetermined, nonlinear
system, The linearization of the nonlinear system with respect to
the unknown wavenumbers is not valid because the phase functions of
the waves can be of order one or bigger at large distances and
times, implying that we cannot use standard direct techniques such
ds Gaussian elimination and the singular-value decomposition, and
must resort to the use of iterative minimization methods for the
inversions. We prefer gradient methods over other iterative methods

because they guarantee convergence (Ch. 4).
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The error covariance of the estimate associated with the linear
system (6.5) does not dependent on the data and the estimate itself,
put only on the statistics of the unknown field and noise, and the
geometry of the acoustic array. Difficulty in the analysis of
variance increases once the estimation problem becomes nonlinear.

In fact, the variance of cur nonlinear wave fit could not be
obtained before the estimate was computed. Thereforé, in the design
of tomographic experiments, it is definitely more convenient to work
with the linear systems. However, the wave fit accounts for the
dynamics.

Wnile Cornuelle et al. have adopted the empirical modes (derived
from the MODE data) as the vertical basis of the sound-speed
perturbations, we have, instead, adopted the analytical modes of
Rossby waves. An advantage in using the analytical modes is that
the corresponding horizontal-structure equation can readily be
obtained from the literature. The lst and 3rd empirical modes
strongly resemble the 1st and 3rd baroclinic analytical modes, and
the 2nd empirical mode is strongly surface-intensified. (The
empirical modes are ordered according to the ratios of their
potential energy, with the most energetic one being defined as the
lst mode.) The first four empirical modes were used by Cornuelle et
al. (1985) and assigned equal enerqy a priori; however, their
inversions have yielded a result of 1 : 0.1 : 0.05 for the ratios of
the energy of the first three modes, showing consistently that the

vertical structure is dominated by the 1st baroclinic mode.
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Moreover, the amplitudes of the higher modes were poorly determined,
because most of the ray paths identified did not penetrate into the
mixed layer to sense the surface-intensified mode, and the other
nigher modes are basically transparent to acoustic tomography (see
Ch. 3 for the discussion). Our inversions, therefore, have not
attained a poorer vertical resolution although only the lst
paroclinic analytical mode was used,

In oojective mapping, the experimental noise basically consists
of the measurement and internal-wave related errors that generally
have zero expected values. However, in subjective mapping, the
aaditional error introduced by the idealizations and assumptions
usea in builaing the dynamical model may have a nonzero statistical
average. A consequence of the zero-mean hypothesis on the errors
that in reaiity have nonzero expected values is the generation of
bias error in the estimate. To illustrate this, let us suppose that
the model equations §£°=£(E)+1' associated with a pure acoustic
detection of narrow-band planetary waves can be 1inearized about the
true values Py of the wave parameters p, so that the expectations

of gg?, p and v' are related by, approximately,

<g§°> = 3§(Et) By *<v'> . (6.8)
P

After solving the linearized system and then using (6.8), the

expectation of the maximum-1ikelihood estimate p* can be written

A ARe I
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approximately as

P*> =Py * b (6.9a)
where
o = LERe))Teod2LlRe)yy-Tp2fled g Te-Ley, (6.9b)
32 - 3E 3E -

is the bias of the estimate andC ., is the covariance of v'.
Clearly, the bias exits when <1‘>_is not zero.

In spite of the generation of bias in the estimate, subjective
mapping has its appeal. By trying many different dynamical models
in the inversions, the data can make diagnoses for plausible
dynamics. Hence, one can learn the dynamics of the field directly
from the inversions and then use the knowledge gained to make model
corrections. In fact, the generation of bias is not of major
concern, since when the model used is accurate, the bias will be
small. Moreover, the estimate generated by objective mapping is

also piased. Using (6.5), (6.6) and (6.7), we can easily show that

the expectation of the objective estimate of i(tk) is given by

ar(t)s = LATg'll(tk )yg;_ll‘lfg'!l(tk A a,(t,) (6.10)

where gt(tk) is the true value of g(tk). Clearly, the
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objective estimate is biased, i.e. <a*(t )>#a,(t,), unless no

a priori information is asserted, that is unless the a priori
covariance C. approaches infinity. But, if C, approaches

infinity, so-ﬁill the error covariance EA&* o; a* (which is
expressed in (6.7)), because ATg;l(tk)A is singular. As a

matter of fact, sufficient a priz}i information must be supplied to
generate enough bias to ensure the stability of the inversion.

The inversion method of Cornuelle et al., which uses the linear
minimum-variance criterion for the estimates, in principle, can be
modi fied to become four-dimensional. An objective approach is the
implementation of the time correlation of the field into (6.4) and
the expansion of system (6.5) to include observations at other
times. Let us suppose that there are N+1 equally spaced data points

in each time record of travel-time perturbation, so that the

expanded system can be cast as

ﬁlo =A|§.l + !I (6.113)
where
stft ) A a(t,) vit.)
ﬁlo- —. 0 , A"’ X , i - .0 and Y-l_ - .O
stft,) A a(ty) v(t,)
(6.11b)

Once again, the linear minimum-variance estimate a'* of a' can be

found by applying the Gauss-Markov Theorem, at least in theory.

...............................
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- However, the implementation of the estimation procedure on avajlable
b
- computing machinery may not be feasible, since the storage
. requirements for the covariance matrices Ea' of a' and EAa'* of
a'* can be large and thus the computation of a'* might be too
costly. To obtain a'*, we need to evaluate its (error) covariance by
g |T -1 1 -1 -1
& Cpare = (ATCIAENT (6.12a)
‘Qii or equivalently, as shown in Liebelt (1967), by :
Ll ]
B Tyae aTee Lo aTyT :
"' _'Agl* = 9‘2' -(EE'A )(A 21.5 +£!l) ‘Eé_'é ) . (6.12b)
‘{Eg Because the system is highly underdetermined, the latter formula E
b }
vag (6.9b), which involves the computation of the inverse of a smaller
J
e matrix should be used; the inversion of this m(N+1)xm(N+1) matrix
S350
\ﬁi; would consume the largest portion of the total computer time
Y required to produce the estimate. Since the time required to
T perform a matrix-inverse operation is approximately proportional to
the cube of the row (or colum) dimension of the matrix (Dahlquist
and Bjorck, 1974), this four-dimensional objective mapping can be
- very inefficient for large N.
An alternative approach, which is subjective, is to impose a
EQ;f deterministic relation instead of a statistical correlation between

x» the perturbations or the wavenumber spectra at different times. 1In
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o this case, a linear, minimum-variance, four-dimensional estimate can
IleI also be obtained if the dynamical relation is linear or can be

! closely approximated by a 1inearization at all time steps, such that
':':' 9_(tk+l) = Qka_(tk); k=0,1,2,..:,~‘1o (6013)

With the presence of the dynamical relation (6.13), the number of
independent or free parameters in (6.11) is drastically reduced, and
one can choose the unknown to be the initial spectral amplitudes

- a_(to) or the spectral amplitudes at any other time. As a resu]t,-
the covariance matrices are nolonger overly large. Furthermore, the
linear, minimum-variance, subjective estimate can be computed using
an accelerated algorithm for a Kalman filter that corresponds to a

sequence of predictions and reestimations at each of the time steps

N A

(elb et al., 1974), so that an abundance of computation time can be

saved. In (6.13), the 94('5 are often called the transition

ma trices.

-
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A derivation of the sequential-reestimation algorithm through

'y
;

the minimization of the corresponding cbjective function is
presented in Appendix, and we will demonstrate the superior
‘.:'.';." efficiency of this algorithm next. In Appendix, we show that, by

choosing a(ty) to be the free parameters, the optimal estimate

g*(tN) of g(tN) can be obtained by sequentially computing
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R * -1, Ta-1 0 -1 p
" a (ty,) = H A 51 (ty,q st (tm)+§E (tysq)a7(ty, )]
A (6.14a)
in order of increasing 1, where
| -1 T T -1 T4T
. By o= gé(t],l)-[gg(tm)ﬁ 1A ggttm)ﬁ fgx(tm)] [gg(tm)ﬂ T,
- (6.14b)
aP(t),) = Dyax(ty) (6.14c)
and
C (t,,) = D h71D! (6.14d)
Za'1+1’ 0 4 :

There are altogether N+1 applications of (6.14) in the sequence, and
in each application, the computation of the inverse of an mxm matrix
is involved (as indicated in (6.14b)). Hence, the total computer
time required by the sequential-reestimation algorithm is
proportional to (N+1)m3. Thus, when compared to the

four-dimensional objective mapping, subjective mapping with a linear

or linearizaole dynamical relation is (N+1)2 times faster. For

o large N, the computational cost saved by the sequential-reestimation
- alogrithm in performing a four-dimensional mapping can be
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One would probably consider using the economical o
sequential-reestimation algorithm when the sound-speed perturbations ii}
are assumed to be produced by broad-band planetary waves. However,
one must be aware that the applicability of the algorithm depends s
critically on the validity of the linearization of the dynamical ]
relation. When the relation is nonlinear, the error introduced by e
the Tinearizations involved at each time step demands special
investigation, since the error can propagate along the reestimation
sequence and be amplified. Thus, the presence of a mean flow in the
tomographic region can present some difficulties in the
implementation of the wave dynamics into the transition matrices
Dy because the dynamical relation between the wavenumber spectra
at different times is nonlinear when the intensity and direction of
the flow are unknown. (However, even when the linearization is
invalid, one may still estimate the broad-band spectra by iterative
Q& minimization techniques.) This broad-band, subjective mapping has
yet to be performed, but it should be of interest to compare the
hypothesis of broad-band to the hypothesis of narrow-band wave %i;
disturbances in describing the mesoscale fluctuations in the region.

We have used the iterative gradient method of Fletcher and

. .l e )
I ¥ e e

Powell (1963) for our nonlinear inversions, that is the wave fits. =
In order to obtain the gradient vector of the objective function,

which is required by the method, the gradient vectors of the £ f:
wave-induced travel-time perturbations must first be computed, which éfi

involves integrating the derivatives of the wave-induced sound-speed
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n perturbations with respect to each of the wave parameters along all ]
'\.‘: ' :
s the long-range ray paths used. The method, therefore, could be very L
o ‘<'4
i - ad

inefficient i f the integration operations were to be performed at

*‘-‘ each iterative step of the minimization process. To accelerate the

[
1

Lo 1

e A ‘i
KL P

'.':j: process, we have precalculated the matrix A of the linear system
(6.5) and have it stored in the computer, so that the gradients
could be interpolated by a two-dimensional cubic spline whenever
they were needed. Excluding the computer time required to compute
A, each minimization consumed 40 to 60 minutes on a VAX 11/780. We
j’.j:j also experimented the daily (i .e. three-dimensional) objective
inversions using Gaussian-elimination techniques on the VAX 11/780
and found that each of the inversions would consume approximately 5
minutes, again excluding the time required to compute A. Therefore,
by projection, the time required to do a broad-band,
four-dimensional inversion using the sequential-reestimation

algorithm involving 8 time steps (i.e. N=8) or to do a sequence of 9

daily inversions is approximately (N+1)x5:9x5:=45 minutes. This is

| WU

e oo s e .

quite comparable to the time required to do one minimization of the

L

objective function of the wave parameters, with the same nunber of
data incorporated. Finally, the time required to do a
time -dependent objective mapping that incorporates the same number

of data is approximately, again by projection,

R e

(N+1) %(45:81x45=3645 minutes, indicating that the computational

oA A

burden is huge.

..........
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6.5 Pure Acoustic Estimates

The spot observations contain some pieces of information about
the waves which are independent to those detected by the acoustic
» array. In the wave fits, the additional independent information
acts to enhance the uniqueness and reduce the variance of the
estimates of the wave parameters and the corresponding sound-speed
perturbations.

When the spot measurements are withheld, the estimates are
degraded. In Fig. 6.2 and 6.3, we show the maps of the sound-speed
estimate on yearday 83 and 120 at a depth of 700 m, generated by a
fit of 3 waves of Model 1 to the travel-time data alone, and
tnerefore corresponding to the result of a time-dependent pure
acoustic inversion., The two corresponding error maps are presented
in Fig. 6.4 and 6.5, showing the contours of the standard deviation
of the error of the sound-speed estimate. These errors are about
nalf the size of those errors in the time-independent acoustic maps
— produced by Cornuelle (1983) and Cornuelle et al. (1985), but are 2
- times larger than those of the optimal fit when the spot f
measurements are included (see Fig. 5.17 to 5.19). Furthermore, as
expected, the error maps indicate that away from the central region
of the experimental area, where the ray-path density is low, the
mapping ability by the acoustics diminishes. Notice also that the
errors on the left half of the square where more ray paths have

traversed are slightly smaller, as a result of the presence of the
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Figure 6.2. Sound-speed contours at a depth of 700 m of a pure
acoustic estimate of the wave field in the experimental square on
yearday 83. Contour interval is 1 m/s and the reference sound-speed

at this depth is 1506 n/'s.
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acoustic estimate of the wave field in the experimental square on 3

. yearday 120. Contour interval is 1 m's and the reference

T sound-speed at this depth is 1506 w's.




218

-':.": - ./ : '
S 267 '
L ) w7 }
C 6
A -
B i‘\ C ¢
| 1 -
) 4 +.\ /of/c ! )
ZOCROINATES : ‘
3F JIRIGIN
{3 33. 2 230)
o | ERICR MAP FURE ACOUSTIC. DAY 3. 2==-7032 M :
AL ! MCOEL 3 WAVES WITr MEAN FLTW 2
: STALEa 23 .0 SRID SITIe 1 50 LINTIGR INTE®VALe )
| A— ! 23-APR-38 1) 4 REAVY INTERVALS O v
Figure 6.4, Contours of the standard deviation, at a depth of 700 m
in the experimental square on yearday 83, of a pure acoustic
estimate of the sound-speed perturbations in the wave field.
Contour interval is 0.1 ws.
SRR
._\‘.'.
e
o

. I - . v . B °
SOV L S PPl W W % PP O S SR S A e et eesketesdetdenb bt dasteteciutethniviethhdintiit




MRSt S St st

‘l' 4,

PNV IARIA,. DT

Y

219

7
“ -
/
5
.
: 0
: COCREINATES |
f OF ORIGIN '
i (0 00. 0 00) . p—
SRRLR OMAS RFLBE O ATULITIN. DAy 12T Z==T720 M
I MOCEL % WAVES WITH MEAN FLOW
, STaEm 52 .3 19I5 lIfe L %) SINTILR INTCRVALa ) )
| . — 29-APR-85 30 41 nEAVY INTERVAL= O
!
T o T L o r — ) Al LS T L A 4
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estimate of the sound-speed perturbations in the wave field.
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receiver RS,

In addition to having a larger error variance, the pure acoustic
estimate of the wave parameters is also nonunique. However, the
different wave-parameter estimates do produce a similar pattern in
the sound-speed perturbation, showing, qualitatively, an elliptical
cold eddy, initially located at the center of the experimental
square and slowly moving westward. Consistently, Cornuelle et al.
have also observed a similar pattern from their objective acoustic
maps .

Al though the travel-time data obtained from this first
tomographic experiment are not powerful enough to determine the wave
parameters by themselves, they certainly have contributed
significantly to the success of the detection of the waves. The
dynamical field in the time period separating the two CTD surveys
cannot be extrapolated from the surveys alone; one can hardly deduce
any relation between the two CTD maps (Fig. 5.11 and 5.15) but only
to observe from them that the initial cold eddy has disappeared and
a front has appeared in the experimental square at the later
period. Furthermore, the moored temperature time serijes obtained at

three horizontal spots that only occupy less than 1/4 of the square

cannot possibly determine the directions of wave propagation, (The

fit with three waves to just the CTD and moored temperature data was -
found to be nonunique.) Thus, the travel-time data has provided the ii
essential information on the westward movement of a cold patfern i

that 1inks the other information.




We have learnt from simulation inversions that when the
locations of the acoustic moorings are known, the wave parameters
can be uniquely determined by the travel-time data alone. In the
experiment, however, the acoustic moorings S4 and R5 had no
mooring-motion data, and all the other acoustic moorings had some
gaps in the mooring-motion data series. Therefore, the failure to
track all the acoustic mooring motions has prevented the tomographic
array to perform optimally in the wave observation,

New et al. (1982) and Munk and Wunsch (1982) have studied the
horizontal resolution of the tomographic configuration of the 1981
experiment for a perfectly navigated array, using the Backus-Gilbert
method (1967, 1968 and 1970). By considering the worst case, that
is without the use of a priori information such as the temporal and
spatial correlations of the field, New et al. have found a minimum
average resolution length of 100 km (i.e. 1/3 of the array size).

By incorporting spatial correlation, Munk and Wunsch have reported a
resolution length of order 50 km. Thus, the tomographic array is
potentially capable of resolving waves or isolated oceanic features
of lengths as short as approximately 100 km. In order to attain the
same resolution, a conventional spot-observational system would
require at least a total of 36 moorings, that is a minimum of one
mooring per 50 km square (a criterion from the Sampling Principle
(Steiglitz, 1974, and Bendat and Pierson, 1971)). In comparison,

the tomographic system that consists of only 9 moorings is therefore

more economical and adequate than a conventional system for ocean
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i"i; monitoring when the acoustic moorings are tracked accurately.

";:: Besides resolution, an important measure of system performance
is the variance of the estimate. For perfect navigation of the

;&f acoustic array, a first-baroclinic perturbation signal of 2 w's

< (rms) at 700 m depth, a horizontal Gaussian correlation of the field

with a decay scale of 100 km, no correlation in time, and a noise

level of 5 ms, the standard deviation (i.e. the square root of the

variance) of the pure acoustic estimate at a depth of 700 m is

contoured in Fig., 7.1. It is seen that over 60 percent of the

. tomograpnhic region, mostly in the middle of the square, has a

| standard deviation which is below +0.4 mw/'s or less than 20 percent

of the signal. However, the error increases to 40 percent near the

;estern and the eastern boundaries where the arrays of sources and

receivers are located. The increase in error is due to the fact

that the ray-path density is the lowest near the acoustic moorings.

g
Ve
i \ % 4 s Tt e
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It is obvious that the system performance can be improved
efficiently by mounting temperature recorders on the acoustic 1
moorings. In doing this, the number of moorings used in the

observational system stays the same but the variance is reduced in N

- the areas near the moorings.
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6.6 Concluding Remarks

The mair purpose of this study has been to investigate the
existence and dynamics of planetary waves in the tomographic region,
and to find out whether the waves, when present, could be detected
from the data of the experiment, The detection process consisted of
the estimation of wave parameters and diagnosing the plausible wave
dynamics with the data. From the result of the estimation, we have

}?] come to the following conclusions: (1) stable and dispersive
planetary waves did exist, at least as a local phenomenon in space
ana time, (2) the wave propagation was strongly affected by the
local mean flow, even though the mean flow was weak (a few cmws),
and (3) due to the existence of some experimental deficiencies such
as untracked mooring motions, the tomographic observational system
A).' alone was unable to detect the waves; however, the spot observations
” have provided the additional information needed to make the
o detection successful.

In this particular study, we have demonstrated the usefulness of
imposing dynamical constraints in the inversions of data. That is,
by imposing different but plausible dynamics, one can learn the
T dynamics of the field directly from the inversions. The
SR incorporation of dynamics may happen to convert a linear system to a
nonl inear one, as this was our case, but we should not be disturbed
by this consequence, since there are many iterative minimization

techniques avaflable for nonlinear inversions. However, in the
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design of future tomographic 2xperiments, it is still recommended to

Ph ,:-1: (' "‘:‘ ! '.“;‘/'/. s

- work with linear systems whenever possible, because the
corresponding sensitivity analyses are much simpler and analytically

more tractable (Ch. 7 illustrates the use of linear systems for one

such analysis).

A significant consequence of the incorporation of the wave
dynamics was the observation of the barotropic component of the
Tocal mean flow through the dispersion relationship, which would
otherwise be impossible to observe due to the Tack of explicit
o current measurements (unless some other aséumptions were made, such
o as the level of no motion). We have also obtained an estimate of
'[ the baroclinic component of the mean flow, corresponding to a
jfj; westward shear flow of the 1st baroclinic mode. Supporting evidence
for the presence of such a sheared mean flow in the tomographic
‘; ] region can be found in Cornuelle et al. (1985): they have computed

. the aifference between the average sound-speed profiles in the
;;55 tomographic and MODE regions, and the differenced profile strongly
: resembles the first baroclinic mode (Fig. 3.6); moreover, it is
negative and negative perturbation implies the flow direction is
westward. In Fig. 6.6, we show the profiles of the mean current
s i{ obtained in the optimal wave fit,

One of our goals was to investigate whether planetary waves
coula be detected by acoustic tomography alone. It was, perhaps, a

Tittle bit disappointing to find out that the tomographic system

A, deployed in the experiment was not able to do so alone, that is to
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determine the wave parameters uniquely. But, we must keep in mind
L that this was only the first field test of such observational
' system, and therefore the system was far from being perfect. It can
be shown in computer simulations that the waves would have been
detected if the noise level was reduced to ~5 ms or the mooring
positions were accurately navigated, suggesting that the tomographic
system is potentially capable of detecting such waves by itself.
Obviously, the spot-measurement system deployed was also unable
to detect the waves alone. The reason is that the system did not
obtain any information on the wave field over a long period (~40
days) between the two CTD surveys, except at three horizontal spots

where the midwater temperature recorders and sensors were moored.

17

As to the spot-measurement system, the inclusion of the acoustic

f ]

data provided the missing information needed to make the detection

s X g
P
i

PRt
P

successful. In view of the pure acoustic objective maps in
Cornuelle (1983), Cornuelle et al. (1985) and the result of our pure
acoustic wave fits, we may describe the acoustic data as containing
. the information of the westward movement of a cold pattern. This
information has filled the gap between the two CTD surveys and the
moored temperature data at three horizontal spots to give a unique
estimate of the wave parameters.

In retrospect, the major obstacle to understanding the

large-scale fluctuations in the ocean interior has been the

difficulty in observing them. Traditional observational systems by
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themselves are not adequate for large-scale monitoring, because an
excessive amount of ship time and too many instruments would be
required to attain the proper resolution of the field. The newly
invented technique of acoustic remote sensing, however, holds great
promise (Munk and Wunsch, 1979, and The Ocean Tomography Group,
1982). A full tomographic system is much more cost-effective than a
full spot-measurement system and has the potential to provide
adequate mapping by itself, as has been demonstrated by Cornuelle et
al. (1984). In this study, we have further demonstrated that a
tomographic observational system, when incorporated with sparse spot
measurements and the plausible dynamics of the field, is certainly

capable of making observations of large-scale phenomena.
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CHAPTER 7
THE ERROR OF THE TOMOGRAPHIC INVERSE SOLUTION
IN THE PRESENCE OF UNTRACKED MOORING MOTIONS ‘]

- 7.1 Introduction

In this chapter, we investigate the error of the optimal
solution sc* for the large-scale sound-speed perturbation sc in
space x=(x,y,z), attained via a pure acoustical inversion based on
o the travel-time data st measured at one moment in time. In

2>=<(ac*—cc)2> of

particular, we study the error variance <asc*
sc* in the presence of untracked horizontal random motions sx of the
moored acoustic sources and receivers, Since we do not consider
time-correlated mappings of sc, the time dependence of sc, sx and st
is suppressed.

Since the observed travel-time perturbations st contain
information on oceanic perturbations integrated along the ray paths
and since the integration automatically filters small-scale oceanic
perturbations, st are prominent candidates for the data to be used
in estimating the large-scale sound-speed perturbations in
ffe mid-oceans. However, in using st, the fluctuating horizontal

motions of the sources and receivers sx must be taken into special
consideration because the dominant portion of st is produced by sx

ﬂj} rather than sc. While a horizontal mooring displacement of 200 m

perturbs the travel time by more than 100 ms, a typical mesoscale ?i
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eddy field perturbs the travel times by only about 25 ms in a 300 km
transmission. The large travel-time perturbations produced by sx
cannot be modelled as part of the experimental noise, because this
will only cause the estimate of sc to have an unacceptablely large
error variance. The vertical component of mooring motion is not
considered nere because it is usually smaller and produces
insignificant travel time perturbations.

In order to estimate sx and sc accurately, the use of acoustical
navigational systems for tracking mooring positions was recommended
Dy Munk and Wunsch (1979) and deployed by The Ocean Acoustic
Tomography Group during the 1981 Ocean Acoustic Tomography
experiment. The idea is to estimate sc based on the corrected
travel time data in which the large noise induced by the mooring
motion is removed. However, tracking data can be missing because of
instrument failure; in that case, the best estimate of sc is found
by treating the travel-time perturbations induced by sx also as
signals in a inversion in which both sc and sx are estimated,

simultanueously (Corriielle, 1983, and also see Chapter 4 for the

discussion on design-parameters subject to errors). In this way, an

(AT

optimal estimate sx* of sx is also found; sx*, with no doubt, is a

reliable estimate since the corresponding signals dominate in the

(O

data. However, the objective of Ocean Acoustic Tomography is to get
a reliable estimate of sc rather than sx, and we can expect some

trage-offs between the quality of the two estimates, for large sx i

can upgrade sx* and degrade sc* at the same time.
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Although the simultanueous estimation of sx and éc is the last
resort for missing tracking data, it is worthwhile and interesting
in considering the economic aspects of Ocean Acoustic Tomography, to
ask whether reliable mapping of sc can be generated without the
deployment of navigational systems for tracking mooring motions at
all. A general answer to the above question cannot be given because
it depends upon particulars: the amount of available information
concerning éc, such as the statistics of its horizontal and vertical
structure in the ocean of interest, the smallness of the
experimental noise compared to the oceanic signal, the tomographic
configuration (geometrical arrangement of acoustic sources and

receivers in the ocean), and the variance oi

of sx (which
depends on the type of moorings used and the forces acting on them),
all contribute to the answer. Thus, a problem in engineering design
is to decide whether tracking mooring positions is necessary or not,
prior to conducting an experiment in a selected ocean, with the
available statistics of sc and sx, and a selected tomographic
configuration. The decision can be made only by computing <A6C*2>
in numerical simulations and seeing if the error is tolerable.

The main purpose of this chapter is to show that there is an

2> as a function of oi

upper bound for <asc* and this upper
error variance bound is rapidly reached with slowly increasing
ci, implying that the error of sc* is effectively independent
of mooring motion once the latter has reached a critical value.

This result simplifies the decision making process because only the

LT et e v
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upper error variance bound is important for the determination of

whether tracking mooring motions is needed or not, regardless of the

size of Ty In the next section, the system of equations with

53;3? unknown sc and sx are formulated, and the system is then used for
the derivation of the analytical expressions for sc* and its error
variance in Section (7.3). Also in Section (7.3), the upper error
variance bound is shown to exist. This upper error variance bound

B coincides or approximately coincides with the error variance of a

- solution for sc that is estimated with the "differenced system".

‘? The differenced system, in which sx is eliminated, consists of a set
of "differenced model equations” that relates sc to the "differenced

f:;ﬁa travel time perturbation data". In the elimination of sx, one of

fifi the model equations associated with a resolved ray path for each of

the source-receiver (S-R) pairs is used as a reference and

substracted from the other equations associated with the other

e resolved ray paths for the same S-R pair. The differenced system,

ijl its solution and the error variance of its solution are presented in

- Section (7.4). In a computer simulated study presented in Section
iili (7.5), we demonstrate that the upper error variance bound is rapidly

reached. Conclusions are stated in Section (7.6).
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7.2 The System With Untracked Mooring Motions

Suppose there are NS moored sources (51’52""'SNS) and NR 7
moored receivers (Rl'RZ""’RNR) deployed in a typical
- mid-ocean tomographic experiment, and there are N resolved

multipaths for each of the S-R pairs, so that at an instant in time,

v

there are a total of m=qxN observed travel time perturbations with

4=NSxNR and a total of u=2(NS*NR) unknown horizontal mooring

Ry

L displacement components. Let ati1 be the travel time perturbation
observed from the ith ray path in the set of N resolved multipaths
o tnat connects the 1th S-R pair; this ray path has a nominal

trajectory given by 5(511) with $§ being the arc length along

gL

;;{~ the patn's trajectory. Let us define the 1th S-R pair as the
T SJ'Rk pair with 1=NR(j-1)+k. Also, denote the

iadoin deh Sl S A N 4
MR

(eastward,northward) horizontal random mooring displacements of Sj
and R, as (axs,sxs+1) and (5xr,6xr+1), respectively, with

s=2j-1 and r=2NS*+2k-1. It then follows from Cornuelle (1983) that
the linearized model equation corresponding to the datum s§tyq can

be expressed as

sty = - scir) dsyp * ai][(cxs-cxr)cosb]+(dxs+1-axr*1)sintﬁ] * Vi B
“f?) (7.1) %

where a1 is the ray parameter (the sound slowness at the turning

puint) of the ray 5(511), Vil is the experimental noise in o
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cti], co(z) is the mean sound speed profile that varies with
depth -z, and b] is the direction of the horizontal line of
transmission from Sj to Ry, measured in degrees (positive
anticlockwise) with respect to the east-axis (x-axis).

Following Munk and Wunsch (1979), we discretize sc(x) into an
n-dimensional vector sc with the components being the sound speed
perturbations averaged over small regions (boxes) of equal volume in
the ocean, so that the term involving the continuous integration in

(7.1) can be approximated as a weighted discrete sum:

sc(r) ds.y = wWisc, (7.2)
— —-jl=
co(z)

x(s4q)

with each component in the weighting vector L being minus the
product of the lTength of the segment of s;; and the mean-square
sound slowness in the corresponding box. After joining all the
cxi's in the vector sx such that
6x = (8x,,8x ox )T (7.3)
oA = l’ 2’---: u s .
(7.1) can be approximated, with the use of (7.2), as

T T
Stip = Wy Dypex * vy, (7.4

where gi] is the weighting vector of sx that has only four nonzero
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‘:.
::: . components: + aﬂcosb] and * aﬂsinb] in the corresponding
columns as described by (7.1).
. We can now proceed to write down the system of equations
:-ff{; appropiate for the tomographic inversion. After segmenting the
.L,_ complete data vector st into partial data vectors st;'s and the
complete noise vector v into partial noise vectors Y 's such that
. _ T, &
\»l’ _G_t.i = (Gtil,dtiz ,...’Gtiq) 'Y 1—1,2,...,", (7-5)
S and
S _ T, 5
o Vi = (Vil’viZ""’viq) v 11,2, ...,N, (7.6)
e
_i and approximating all the ag 's by a referenced mean sound
;Z:-;‘; slowness (this approximtion has minimal effects on the model
equations because all the resolved ray paths are near axial ray
paths with small launching angles), the system for estimation can be
expressed as
st=Fpty, (7.7a)
- with
st A, B - v
1 1 §C <l
ste s, E<| K B ope ] v B . a7
e sty Ay 8B %
1,-_.':’ where 51. is an gxn matrix with "—‘11.1 on its 1th row, and B is
an qxu matrix with lﬂ] on its 1th row.
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. 7.3 The Upper Erorr Variance Bound
‘lit We summarize the a priori information as follows: The parameters
gL -
\ éc and sx to be estimated have zero means and a covariance matrix
E}.
o ¢ ol O , (7.8)
...-w; 0 leu
¢ 2 . .
o where EEE and °x£u are the covariance matrices of sc and
A_; 8X, respectively, and 6x and sc are uncorrelated; Lu denotes an
i identity matrix with uxu dimension. For simplicity, all the cxi's
are assumed to be uncorrelated with each other and have the same
variance oi. We further assume uncorrelated experimental noise
with variance 53 such that the noise covariance matrix is
y ¢, = ol (7.9)
N We are now in the position to apply the generalized estimation
. procedure derived in Chapter 4, which is the minimization of the
l' -
¥ ﬁi objective function s(p) of (4.7), to the present situation. Since
"..l . 3 3 - 3
jﬁa the model equations (7.7) are linear, the unique minimum of s(p) at
\{'
22
f : p=p* or (ﬁg,gl)=(ggf,§5f) is the linear minimum variance estimate,
e
e and its error covariance matrix is identical to the inverse Hessian
'351 matrix ﬂ'l of s(p). After replacingF, EE and Ev in the
. equation for H (4.22b) with their present definitions as given in
o (7.7b), (7.8) and (7.9), we obtain
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c c -1 -2 ZN AL
5% yl | Zesc* Zascr,asx*| | = AR b
. — = e N =
T -2,.7 -2 -2,.7
Cascr,aexx  Saexr oy B 1._151 ox LyNoy B8
(7.10)
with
L= (el o2 f ATa. )~ (7.11)
S R ~ T '
where EA&E* and EA&* are the error covariance matrices of sc*
and sx*, respcctively, and EAc_c*,Ag(_* is the cross covariance
matrix of the errors of sc* and sx*. With the use of matrix
identities given in standard mathematical texts for the inversions
of plock matrices, we further obtain
c R a-"z( Y ey A (7.12)
Coscx = Lk TZ_i_Z_i’ '
i=1 i=1
where
G = (Bo )("3 1+ o28'8)" (s )T (7.13)
= =Xy Xx= =" '=x"" )

Furthermore, from the equation for p* (4.22a) with p,=0, sc* can

be equated to
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§_ 7.4 The Differenced System

"y .

K

D

::d The differenced system can be expressed as

= st,-6t A,-A V-V

o 1 2751 =2 =1

- sta-6t = K5-A V,-V

o =3 =1 =3=l s J“.‘l (7.18)

. . | :
|

stysty| L ACA | W

:hg in which sx is eliminated. Notice that the elimination is done by
;;é subtracting a set of model equations (331=A1£g+!1) from the

,fi? other sets (cti=Aicc+vi). The corresponding estimation is
) —1 == -
ﬂf‘ therefore based on the differenced data (st;-st;), the

di fferenced model equations (Ai'ﬂl) and the differenced noises

?Qd (¥;-¥;). The noise of the new system (7.18) is correlated and
:%?; has twice the variance of the original system (7.7). The covariance
e matrix of the differenced noises is

)
- I .1 ..1
& 2 T Ty 7.19
Sk Cav=ov bl : : N (7.19)

. - I . .1

- —q —-q -q
L Applying (4.22a) and (4.22b) to the differenced system, and

- equating, the error covariance matrix EA of the estimated sc and

. the estimate sc * itself become

2=
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and

N

N
st = Z Mty - o (. A)(Z st)l. (71.21)
i=l

Interestingly, if the product q of the number of sources and
receivers coincides with the rank of B when q<u, that is when B is
underdetermined, then we have GU=I and hence U=UA and
gg*=ggA*. It is always true that U < gA, and in fact, if a lot
of moorings are deployed so that q>>u and hence the diagonal
elements of G, are significantly smaller that unity, then
g<<gA. However, in realistic experiments, q-u, implying that
u-y,.

It is found that the error variance of sc* for given noise
level, a priori information and geometry of the acoustic array is
oounded approximately between L and_gA, as given in (7.11) and
(7.20), respectively, and the error variance approaches the upper
bound U, as o, increases. If in practice s, always exceeded a
critical value such that U, is always reached, then U, can be
used as a guideline in the determination of whether the tracking of
mooring motion is needed for a given experimental setup. The
crucial question, therefore, is to find how small that critical
value of oy is or how large can Oy be before the upper bound is

reached. We will pursue the answer through a computer-simulation

study next.
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7.5 Numerical Results

Computer simulations are used here to study how large oi

can be before C .., reaches U~U for a typical situation. The

tomographic configuration and 58 ray paths of the 1981 experiment
are used in this simulated study; there are q=NSxNR=4 x5-20 S-R
pairs, u=2( NS*NR)=2(4+5)=18 unknown GXi'S and about three ray

paths used per S-R pair; the rank of B is 18-3=15. The vertical
structure of the simulated sc consists of only the first baroclinic
perturbation. Horizontally, the simulated sc is homogenous and
isotropic, and has a Gaussian correlation function with a decay
scale of 100 km and an rms value of 2 m/s at a depth of 700 m. The

3 is set to 52 msz.

noise variance ¢
The covariance matrices EAGC* for ax=0, 100 m and 200 m, and
the upper error variance boundﬁEA are calculated numerically. The
standara deviation of sc* (i.e. square root of the diagonal elements
of EAGC*) for ox=0 and 200 m, and the upper bound for the
stand;:d deviation (i.e. square root of the diagonal elements of
gA) at a depth of 700 m are contoured in Figures (7.1), (7.2) and
(7.3), respectively. The rms errors of sc* versus o, at two

representative locations (a) and (b) in space are also plotted in

Figures (7.4a) and (7.4b), respectively. While (a) is located in an

area with a low density of ray paths at the lower right corner of

the experimental region, (b) is located in an area with a high
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Figure 7.1. Standard deviation, at a depth of 700 m in the o~
tomographic square, of the 1inear, tomographic sound-speed

perturbation estimate in the absence of untracked mooring motion.
Tne sound-speed perturbation has an rms value of 2 /s and a 3

horizontal correlation length of 100 km. The experimental noise is
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In this limit, sc* is also independent of oy and can be expressed
as
U N N N
* 2
scy = (L 0 ) Alst- 1) Al ) sl (7an
- =z - N T =~
g i=1 izl i=1
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N N
c
86C* T 1 T
sc* = (2= > Asst.- > A GI > st (7.14)

Since sx* and C . , are not our primary concerns here, their

<as8X
mathematical expressions are not presented.

It is seen from (7.11), (7.12) and (7.13) that for a given
amount of a priori information (Eac)’ a given noise level (ov),
and a given tomographic configura;;on (which determines A;'s), L
is tne smallest error covariance matrix of sc* that can be attained
using Known mooring motions. If the mooring motions are known so
that o x=0 and hence G=0, then C c*'L and C asc* increases as
o, increases. However, in the limit when sx is large enough so

that the ratios of °€ to the variances of the signals produced

by sx (the diagonal elements of oiETE) approach zero, CAGC*
approaches its maximum bound U and it becomes invariant with 9y

because G approaches
G, =8B (7.15)

+ . : . .
where B is the pseudoinverse of B, and G is no longer a function
of L This upper error variance bound U of sc* can be expressed

as

N

-1 ,,-1-2 T )
! = [E -N Ov ( Z -A-i)EU(

i=1

51)]'1. (7.16)
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Figure 7.2. Standard deviation, at a depth of 700 m in the

tomographic square, of the 1inear, tomographic sound-speed

i
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- perturbation estimate in the presence of 200 m (rms) untracked
mooring motion., The sound-speed perturbation has an rms value of 2

‘.{I w's and a horizontal correlation length of 100 km. The experimental
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( ) is rapidly reached. The upper bound shown is approximated

from the di fferenced system. The sound-speed perturbation has an \
Sk rms value of 2 m's and a horizontal correlation length of 100 km. .
- The experimental noise is 5 ms (rms).
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o density of ray paths near the center of the region. The upper
b bounds for the standard deviation of éc* at the two locations are
. also plotted in the corresponding figures.

It is seen from the figures that the error converges very
rapidly to the upper bound; the standard deviation of sc* for a
small o, of only 200 m is nearly equal to the maximum standard ?
deviation. For this particular experiment, it is indicated from |
Figures (7.1) and (7.3) that in order to estimate §C accurately, say
to within £0.5 w/'s, tracking mooring motions is required. Notice
:f; that the regions with more ray paths passing through them have
;Lﬁ smaller errors only when a,=0, that is only when the oceanic
' signals are dominant in the data. This is because as far as the
estimation of sc is concerned, noise becomes dominant in the data
wnen mooring motions are not tracked, and since the regions with

higher density of ray paths resolve more data variance, they also ?

P resolve more noise variance in this case. -
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{ 7.0 Conclusions

o

X

o The error variance of the estimated sc very rapidly reaches an

2

upper oound as o\ increases. When the differenced system is

I
»

‘n,f used, the upper error variance bound and the associated estimate of
6c coincide (or approximately coincide) with the error variance and
the estimate in the estimation process (unless q>>u). Therefore,

the decision of whether to deploy navigational systems for tracking

mouring motions in a particular experiment can be made simply by a ]
2% simulated study of the error variance associated with the l

differenced system alone, and if this rms error is not tolerable

‘;;; then tracking mooring motions must be used. The upper error bound 3
K can be Towered by reducing the noise level or increasing the number
» of sourses and receivers, and these are the alternatives to tracking

mooring motions when a good estimate of séc is desired.
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APPENDIX
A DERIVATION OF THE SEQUENTIAL-REESTIMATION ALGORITHM

Let us choose the free parameters of the system (6.11) to be the
spectral amplitudes i(tN) at the final time tN in the sequence

of observations and define the functions s(]) of g(t]) by

1 -

sMael = ) sla)l, (A.1a) :
where .
sola(t,)l=1/2 [stPt )-A a(t )]TC’}t ) [stPt.)-A a(t,)] f
0+l SETEI-2 2l 2y e LEETE) -2 21T, 4

172 a(ty) e teg) alty),  (Adb)

sylatt)] = 1/2 [sefr)-A att)TTeibey) Loefe,)-a ace)]
for k>0, (A.1c)

and g(tk) with k<1 is linearly related to a(t]) according to the
linear dynamical relation (6.13). In (A.lb), C,(t,) represents
the a priori covariance of a(t) at t0 or any ot;er time. With the
noise being uncorrelated at different times, it follows from the
objective-function approach that the minimum-variance,
maximum-11ikel ihood estimate a*(ty) of a(ty) can be evaluated by ;}

minimizing

.............................
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(N)
sta(t,)1 = sV ace, 1. (A.2)

Through a Taylor-series expansion, we can recast the quadratic

function (A.l) as

srage1 = sMrax(e)1+ 172 Tatep - (61 La(t-ax(t))]
(A.3)
where gf(t]) is the minimum point and LA is the Hessian matrix

of 1), Furthermore, through the use of (6.13), (A.1a) and

(A.3), s(1+l) can be expressed as

s rage,, 01 - ;fg(tm)-zp(tm)]TE-;"‘M) Caltyyy)-aPity,))]

+ s, Lalt, 0, (A.4a)
where
and o
C,(ty,1) = D70, (A.4c) j

We have neglected the constant term s(])[a*(t])] in writing down

(A.4a); tnhis is of no consequence in the subsequent minimization of




-u':'._

I
O
._.:\ s(“l) . After setting the gradient of s(“l) to zero, the

‘ unique minimum of s1*1) 45 found to be at

C 1 P

- (A.5a)
Amaed where

o -1 AT ¢ AToT .
o3 (A.Sb) i
. It is now clear that the optimal estimate g*(tN) can be obtained
by computing the g*(t])'s, that is sequentially minimizing the

functions s(” in oraer of increasing 1. Each minimization in the

1_-::53 sequence can be interpreted as an improved reestimation of the
fiela. The covariance of the field is updated at ea~h time step of
‘,‘L the reestimation process by the information gained from the

- preceeding minimizations. At the (1+1)th time step, using (A.4b),
L - P i

- (A.4c) and (A.5), a prediction a! (ty4) of alt,,,) is first

‘3; extrapolated from g*(t]) which, on the other hand, is an estimate
_E‘.ffz'.j of a(t] ) based on the data obtained prior to ty+1 then the

-“‘J\ preaicted value is corrected in an estimation that uses the updated
% covariance —C-a_(tl +1) and the data cbtained at Yee

.:~'-:1:

".:\_
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